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ABSTRACT

This dissertation is devoted to the imaging aspect of
the broblem of obtaining high resolution images of
practical radar targets with digital processing
techniques. The motion compensation aspect of the problem
18 also briefly described. A nulti-frequency stepped
(MFS) radar is assumed and the Fourier transform
relationship between the data (dimensioned in aspect angle
and signal freguency) and the target reflectivity function
is derived in both 2-D and 3-D forms. Assuming that the
data is available for 360° aspect angle and using wideband
radar, a coherent digital processing method is developed
which will give the best possible resolution. Such a
sltuation occurs when the target makes a complete turn,
It is found that for such an imaging system the resolution
18 inversely proportional to the mean carrier frequency i€
such frequency is latge compared to the signal bandwidth.
In the case when the data is undersampled in range ot
aspect angle or both, a modified coherent digital signal
processing techhique is described that will get around

such difficulty. It is found that the modified processing

method gives poorer resolution but 1s better than either
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jinterest in the real domain.

the mixed processing method or the incoherent processing
method. The latter two processing technigques are also
described in this dissertation. Experimental results are
also presented and problems with real targets such as

shadowing, glint and scintillation are discussed.

In the 2-D case, the radar data are sampled in polar
coordinate format. The sampling requirements in this
sampling scheme are discussed in great detail. Results
from Doppler processing and Degrees of Freedom concepts
both show that polar coordinate sampling in the Fourier
domain 1is adeguate if the inverse of the greatest sampling
interval {in either radial or cross-radial dimension) in
the Fourier domain covers the entire linear extent of
Analytical methods wusing
Poisson's summation formula show the same results in more
detaill especially in predicting undersampling effects.
The results on polar coordinate sampling can be applied to
other systems in which polar format sampling is a natural

setting.
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Chapter 1

PREAMBLE

'1,1 Background

This dissertation addresses the problem of obtaining
: high resolution images of rotating objects utilizing radar
i signals. High resolution here refers to resolutions which

tare a fraction of a wavelength,

The key idea behind the high resolution capability of

imaging radars is the ability to record not only the
"magnitude of an echo but also its phase. In a broad

sense, radar receivers that can do this are called
lcoherent radar. The era of coherent radar was inaugurated
!when stahle oscillators became available, Once the phase
Emeasuring capability of a radar receiver was realized, it
’did not take long for Carl Wiley at the Goodyear Aerospace
Corporation to initiate the concept of the Synthetic

Aperture Radar in 1951 ([31].

The Synthetic Aperture Radar (henceforth SAR) in the
simplest case achieves high azimuth resolution by making

use of the linear motion of the antenna platform with
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, respect to the earth. The early radar imaging systems
were primarily terrain mapping éystems. The radar

platform was typically airborne. The actual physical

i antenna aperture was wusually small. A bibliography

Econsisting of the articles [8,12,22,35] gives a good

l
ireview of SAR. The first practical SAR system was

: demonstrated in 1957 by Cutrona et al. using an optical

-processor. Since then, a wide range of coherent radar

iimaging systems have been initiated and developed for many

'diverse applications.

SAR can in general be classified into two groups

lbased on the geometry of the system. The first group

| assumes that the target is stationary. This includes the

usual SAR modes which depend primarily on optical

It
i

.mapping, and Spotlight mapping (21,6]. Other imaging

lsystems in the group are based on different principles of

scattering, namely strip mapping, Doppler Beam Sharpening

‘operation, In particular, there is Interferometer Radar

!
[16] for topographic mapping, Harmonic Radar ([17) for

|
|

'[19) for ice thickness profile measurement. Members of

|

~this group are typically characterized as terra.n mappers.

in~foliage metallic targets, and Hologram Matrix Radar

|
% The second group of SAR types is one in which the

,target is presumed to move along a certain trajectory

|
|

. 2
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while the antenna(e) remains stationary. Inverse SAR is a
typical example. Other radar imaging systems in this
: class exploit a mixture of techniques; namely, frequency
diversity (multiple frequency system), spatial diversity
(multistatic system), and polarization properties of radar

reflections. To analyze this type of SAR, a wide range of

iscattering models including Rayleigh, physical optics and
. Geometrical Theory of Diffraction (GTD) are used. Ormsby
!et al. [25] give a succinct overview of some of the
!systems. Inverse SAR techniques can be found in Chapter 7
rof [10] for airborne targets and in [39] for ships upon th
?ocean. Strictly speaking, both groups utilize a similar
' theory but because of the different applications and
‘geometry, the resolution requirements, sampling rate,
Iparameter sensitivity, target model and system geometry

rwill vary. Radio astronomy 1is an exception because it

.belongs to both groups.

! Interest in SAR in this dissertation lies mainly on
fthe Inverse SAR. Such a system is also called a
!Range-Doppler Imaging Radar. If the phase differences
;between the phase of the transmitted waveform and the
;phase of the received echo of some fixed point of
;reference on the target are compensated for, the moving
.target will “"appear" as if it were static in translational

z
motion but rotating about the point of reference. Since




[ B
ithe gross overall range to the target does not contribute

1
+

. to the imagihg process, inverse SAR is essentially a Range
}

5Doppler Imaging system of rotating objects. Except for
!system geometry, this system is similar in principle to
fthe Spotlight mode SAR [6]. The problem of gross range
!estimation and the phase compensation associated with it

“is called motion compensation.

1.2, Problem Description

Consider a rigid body as shown in figure 1.1 rotating

|
%with its axis normal to the paper. If the illuminating
'radar is far from the target, then the lines of constant

‘range (x) and cross-range (y) are rectangular coordinates

|
“on the target,

; Consider a point reflector at (x,y) on the target,
!
‘The two way phase delay of an echo from this point can be

"measured by a coherent radar as

t

4n
¢ = T r(xIY)

iwhere A is the wavelength of the radar signal and r(x,y)
lig the antenna to the (x,y) point distance. r0>>l x|,
!

:ro>>ly]. Then

r(x,Y) = v(r0+x)2+y2

2

n
= (x4rgl+ §T¥g?§Y
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. Suppose 5 is constant. Then the Doppler frequency of the

- . echo is
- 1 d¢
: E=sr
' v2 idx y dy
A |dt r, at
i - % [—1 + _&]wy (1.2.1)
; Y
. 0
: ,r; |
e ,A{; where w is the rotation rate in radians per second, so

that x = pcoswt, 7 = psinwt for o=Vx2+y2.

Suppose over a small enough time interval, the target
rotation is small enough such that x does not change by
‘more than one range cell width, This means no range

;migration. In this case the Doppler freguency of-the-

|
!reflected signal 1is proportional to the cross-range
i

“distance y of the point reflector. Therefore, resolving

' the Doppler fregquencies of two point reflecters will mean

|

» resolving them in cross-range,

In attempts to strike a better cross-range

|

» resolution, there has been over the years a trend toward
|
_processing SAR and Inverse SAR (ISAR) data over wider and
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rwider time (hence aspect angle) intervals, Over this time

iinterval, the range coordinate x may migrate through one
}or more range cells (called range walking). Also, the
;“constant" of proportionality % ("l+f§hnin Eq. (1.2.1) may
%not stay constant over the time interval (changing
;Doppler), resulting in Doppler spread, which translates
into poorer cross-range resolution. The latter effect is

i

ralso called variable range-rate (page 14, [37)]).

Processing techniques which partially solve these

.problems were suggested [7] but in 1974 it was realized

f[37] that all these problems disappeared if the data were
|

lregarded as sanmples collected over a polar coordinate
i

fraster. This idea in principle allowed full Doppler

!

fprocessing and hence full potential resclution. Optical
I
‘methods were used t¢ show the principle that indeed by

:physically rearranging . _the data on the photographic

-surface of an optical filter in polar format, the
]

fconventional problems of range walking, changing Doppler,
i

and higher order terms in the Taylor's series expansion of

l

»

r{x,y) disappeared altogether.

N\

In practice, to make the principle work takes more

:considerations. For one thing, most radar objects that

are of interest are three dimensional in  nature.
|
.Therefore, point scatterers in the shadow region of the
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Iobject can get obscured. In other words, some point
=scatterers will not contribute té the signal return for
Eall aspect angles. This means that one will not be able
gto fully wutilize the data from all aspect angles and
?therefore not be able to achieve the best resolution from

these point scatterers.

|
{ A similar problem that is different in origin is that
 for practical radar cbjects, signal returns from point
!scatterers are subject to a great deal of fluétuation,
?both in amplitude and phase. This phenomenon can be due
to either the nature of the target itself or due to
atmospheric effects, The important point is that ncw the

original assumption that the target backscatter function

is constant with time can no longer hold. These questions

are dealt with in Chapters 2 and 7.

In the early years of SAR development, because of the
enormous - storage and computational 1load required to
reconstruct SAR images, most operational SAR used optical
; processors. It was not until about 197% that serious work
on SAR digital processing appeared in the literature
((21,3)).  The advent of CCD correlators (2] and new memory
‘technology (page 181,(6)) make the real time SAR digital
fprocessor a realizable entity. 1In fact, the first real

' time SAR digital system was built ipto the NASA SEASAT
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;satellite and launched in early 1979. Therefore it is
;important that digital processing of ISAR data be studied

"and well understood.

|
|
;
)

The main issue in this dissertation will be to study

‘digital reconstruction techniques with ISAR data to obtain

t
.as good a resolution as possible. One possibility 1is to

i
'collect and process the data over a wider time interval.
i

EThis invariably leads to the necessity of having to treat

! .
,the data as being sampled in polar format. The special

'case in which the target data is collected over 360°

-aspect angle is considered.

.
!

i A question arises from the known fact that a
:practical processor for such imaging sysiems has to be
idigitally implemented [3). Since data samples are
}collected in discrete target aspect angle intetrvals and

conly discrete range samples can be measured with a radar,

"the effects of such dizcrete sampling must be stedied

Efitst. The important question that needs to be answered
Eis therefore how to determine the'sampling requirement for
ithe polar coordipate sampling format. The answer to this
fquestion has applications in Tomography, Radio astronoamy,
iané all other systems which colliect data in polar format,
% ‘

In practical ISAR systems, the gress range (r of

i o
the target is not constant. This will give rise to a

l 9
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composite Doppler in the reflected signal. It is

therefore important to isolate the Doppler component due
dr

to 'Tﬁ? and subtract it from the composite Doppler.

Moreover, since the reconstructed image is a projection of

.the target onto a plane normal to the target rotation

'

vector, the direction of the rotation vector w should be
known or estimated apriori so that the image can be scaled

correctly. For an arbitrary object flying an arbitrary

1

ftrajectory, w is time varying and difficult to predict.

|

'1.3. Approach to the Problem and Thesis Qutline

The radar data collecting system cascaded with a
.signal processor are treated together as an imaging
‘system., A good idea of the resolution ptovided by the
:signal processor can be obtained by first computing the
point spread function (PSF) of the iwaging system. A
‘measute of resolution based on the PSF can be defined by
ieither the Rayleigh criterion ot tue half power width of
_the PsF. The PSF and hence the resolutiﬁn,can-aléo be

‘derived from Dopplet bandwidth concepts. These ate done

in Chapter 3.
%

(3

The polar coordipate sampling treguirement issue is |

dealt with first using the Degrees Of Freedom {(henceforth

1

DOFP) concept [15), then with Doppler bondwidth concepts.

i
; g

Y P, - [S—— PR

|

|




These are studiea in detail in Chapter 4. Unforﬁunately
these concepts only provide a method to evaluate the
;sampling requirement of the system, It does not however,
l‘indicate what happens in the event that the sampling
. requirement(s) is not met. In Chapter 5, Poisson's
" summation formula [27] is used to study the error incurred

in the discrete sampling in polar coordinates. The

analytic expressions derived for the sampling error can be
used to evaluate the consequences of undersampling, At
the same time, Poisson's summation formula is also applied

to Tomographic  systems. The resulting analytic

expre. sions for the sampling error also allow one to
understand the effects of polar coordinate sampling in

; these systenms.

E For reasons of available e#perimental data, a
%Multiple Freguency Step (MPS) radar is described in
EChapter 2. The relation between the data and the target
%reflectivity function o(x,y) is derived first for the two

' dimensional case where (x,y) are the target coordin-tes,

!In this case the target rotation vector is always normal
;to the line~of-sight (LOS). The three dimensional
grelation between 9(X) and the data is also derived with X
='being the target point vector relative to the rotation
ycenter. In this case the LOS is at an arbitrary angle

i
' relative to the rotation vector.
l

l 11
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The analyses in the subsequent chapters are based on
ithe MFE& radar system. Even then, ﬁnless otherwise stated
' the actual analyses can be applied to other high-resolution :

' radar systenms,

Digital implementation techniques of the target

. reconstruction problem are developed in Chapter 6 keeping
“in mind the computational speed and storage restrictions.

These techniques are applied to the experimental data in

Chapter 7.

An attempt will be made in Chapter 8 to derive
analyticaily the various Doppler components of an airborne
target flying an arbitrary trajectory. The time pattern
;Of these Doppler components is studied for a linear
:trajectory and a circular trajectory. An understanding of

the time pattern of the various Doppler components is an
zimportant step before the actual reconstruction techniques

can be (pplied to realistic ISAR data,

Chapter 9 gives a summary of the results in all the

ptevious chapters.

12
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Chapter 2

RADAR SYSTEM AND DATA REPRESENTATION

:2.1 Multi-Frequency Radar System

The radar transmits a sequence or burst of K pulses

.starting at time t;. The subscript i corresponds to the

iith burst. The transmitted signal is
N-1
s(t) = x(t-t;) (2.1.1)
i=0
.where N =total number of bursts transmitted
ti =iT3
T3 sburst repetition period
x(t—ti) is the ith burst of pulses defined as
K-1
x(t).-'= ;xj(t-j'rz). (2.1.2)

xj(t-sz) is the 3th pulse defined as

xj(t) = Ba(t)cos(znfjt+¢j)

1 if et [0,7)] (2.1.3)
at) =
0 if gt [O,Tl]
Tz =pulse repetition period in seconds
Tl =pulse width in seconds
fj =frequency of the jtN pulse carrier

13




, ¢j =arbitrary but constant phase in the jth pulse.

|

It is implicit in Eg. (2.1.,1) that the bursts are repeated

|

Econtinuously. For convenience of illustration, the bursts
?are separated in time. This is depicted in Fig. 2.1.1,
]

5

. not exist depending on the application and design. For

with T3>>T,. Time separation between bursts may or may

;example, in designing a “track while scan radar," one may

!
iwant to separate the bursts and do search scanning between

|

bursts.

Figure 2.1.2 is a functional block diagram of the MFS

i
gradar cystem. It shows the implementation of a matched
i

ifilter composed of a reference signal generator, a mixer
|
|

K - .
b

(multiplier) and an integrator. The matched filter is

‘matched to a signal phase corresponding to the two - way

fpropagation delay of a point at some arbitrary but fixed

‘range r With the return signal as input, the matched

00
ifilter output will give a composite phase of all

gscattering centers referenced to the point at range X ¢

|

: From Egs. (2.1.1) to (2.1.3) the transmitted signal

.can be rewritten as

! N-1 K-l

. s(t) =B a(t-iT
1=0 j=0

3-jT2)cos(2nfj[t-iT3—jT2]+¢ij)

'where a(t)=1 if tel0,T,], and where ¢ij is the

.arbitrary phase associated with the jth pulse in the {0
i
‘burst. For simplicity, suppose there is only one point

| 1
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Transnitted signal format

I A i N N N A

1‘3 21‘3 31’3

| x(t) Transmitted pulse train -

Burst length = 1‘3 \51
>

AY(C) Received pulse trajn

1% 14 12 eee [ T .

2 1,458 pL LA
¢ ¢ 2¢c

In-phase pulse train

| 1% 1% [14 eee [0,

¢ 2T ir ’
o T CPAra

Quadrature refe.rence signal 2z'(t)= Hilbert transform of z(t:).'

Complex reference signal R(t)= z(t) + jz'(t).

Figure 2.1.1. Signal format for the MFS radar with t 1-0.
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TRANSMITTER

R = 2(6) +i2'(®)
8 (t) T DELAY
R(t-T)
f .
T COMPLEX DATA
a) 1
DUPLEXER o j; ==  p(i,3)
RADAR '
ANTENNA
ROTATING
OBJECT

Figure 2,1.2, Block diagram of the MFS radar data
gathering systen,
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scatterer at range r(t). Suppose also that the pulse

| width T, is sufficiently small so that the jth pulse of

the ith burst can be considered as hitting the target at

' time t =iT3+jTo+7. T is the pulse transit time between

. the antenna and the point target. Then the complex

Erepresentation of the received signal is

2r(iT3+jT2+r)
y(t) = B'E E a(t—iT3~jT2— )
i ] : c
\ . , 2r(iT3+jT2+T)
.exp{jZij(t—1T3~jT2 - - + ¢ij}

where j2=—l.

For simplicity of notation, r{iT3+jTp+t) wil' be
written as r wunless it is important to show the =T
dependence explicitly. For the reference signal to the

matched filter, let us use the complex representation of

' the carrier wave in the following.

|

R* (t-t) = Bexp(-f[anj(t-ts)+¢. 1}

i3

. for tE[iT3+jT2f 1T3+(j+l)T2]' i=0,l’2'oco’N-1'

j=0,1,2,...,K-1, R(t) 1is the impulse response of the
matched filter and tg is sampling time instant of the
matched filter. The matched filter output is thus
ts
D_(t ) = j R* (£ _-t)y(t)dt

ts~Ty

17
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| o
. = BBZ' E J e j[27rfj (t"ts).wij]
2

ej[21rfj [t miTy-3Ty- 55 +¢ljl

! . BBZ Zs jZ‘n’f [t -iTy=3T," --l

. 2x
a(t~1T3—3T2—?;)dt
et D (tg) be sampled at

'3 i * 2r0 . '
. ts = 10T3+JOT2+—-6-—+T1, for 1 =0,1'no.,N"1,
i =3,1,...,K-1. Lo is the range at some fixed reference

pcint near the target point. Then, as 1illustrated in

Fig. 2.1. 2 the sampled data will be

2r
+]02+ 0+Tl
= E ; ¢ L LT UL
D,. (1 ,1 )= BB j 2r0 a(t iTy 3T2 P ydt
3 igT3%3T,

. exp{j’ 21Tfj [ (io'—i)T3+ (jo—j)T2~ -czs(r-ro) 1}

;where D (t,) is now denoted as D (igJp). For | r-ry |

isufficiently small (say [r—rol<<T1=pulse width),

|
Dr(iorjo)-——TlBB'Z Z(l -1506(3-3,)

3 JZﬂf (i, l)T 3+ (3,=3)T, -»(r X))

=BB Tlexp{ janJO( )(r ro)}

‘Thus in general
R 2f‘
BB'exp{jZn(—El)(r~r0)}.

Dr(1.3) = Tl

Using a simpler notation




st

2F, ‘
kj = “El ' then
3 3 — ' ’ 2 -
D.(i,]) = T,BB exp{janj(r ro)}. (2.1.5)

;This matched filter output which corresponds to the jth
%pulse of the it? burst is the sample data point
;corresponding the the jth frequency. The output from each
Epulse is a complex number whose phase corresponds to the
Etwo way path difference between the target point and its
;reference, and whose ‘"amplitude" T;BB' measures the
gscattering coefficient of the point object. The radar
:system described will therefore measure the phase

jdifferential between a target point and a reference point.

It should also be noted that if {fj} is arranged so

| fj ~’=fo + jJAf
l k4 =2f0 +'g_A—§

| 5= e

iwhere Af is the temporal frequency step, then D.(i,])
{

?represents the spectral signature of the point object at

! th

‘range t corresponding to the i burst. If one takes the

?discrete Fourier transformation of Dr(i,j) over j, a range
)
|

i

ptofile can be obtained. The above assertion, of course,
holds true only if the target range r does not change
?significantly over the burst length interval, For a
fcontinually moving target (changing ¢  with motion in
%translation and rotation), the entire burst must be

|
‘'sampled before the target point moves sufficiently far to
[ 19




[
' produce appreciable phase shift, The customary criterion
i . :
“is to set the phase shift over half the burst length to be
|

‘less than n/2. In the worst case, this corresponds to

KT 2fB

2
vyt == ) ()

A

LS
2

where v, is the range rate, fy the signal bandwidth over

‘the entire burst. The pulse repetition period within a

|
|
|
|
|

. burst is therefore governed by

e~

T
2erf

2

[[7AN

. (2.106)

B

. For example, with K=256, v,=250 m/s, fp=500MHz, T, S15us.
I .
'This corresponds to a maximum unambiguous range of only

''2.25knm,

|

% wWhen the above conditibn on T, is not nmet, range
?profile distortion will be one consequence. If the point
:target were stationary, Dr(i,j) iq Eq. (2.1.5) 1is an
iaccurate representation of the point target spectrum. The
:DFT of D, (i,3) over j will give a range profile which is
!the result of an impulse function convolved with the
!ambiguity function of the signal «x(t). I1f the point
%target noves in range by some appreciable amount during
gthe entire burst length time, the range profile will be a
grectangular (or pulse) function convolved with the signal
iambiguity function. This'form of distortion is called
;range profile distortion, For constant v , range profile
idistortion (abbreviated rpd) can be eliminated by phasez0
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shift correction on Dr(i,j) . It has been estimated [40]

that

2f,
s = s _ 3
Dr(l:J) rpd Dr(l,J)eXP{ 12ﬂ(—5~)(vrT2)}
corrected

Burst-to-burst range walking is another consequence

|of the motion of the object. It means that the target

époint has moved more than one range resolution cell
|
idistance during a burst time interval. 1In the absence of

' range profle distortion, the effect of range walking is a

|

i shifting in range between two adjacent signatures?‘w’The
?moving target point gives rise to a similar 1linear phase

' shift error of the data. Range walking (abbreviated rw)

. zfi .
B.(i,3) . = Dr(i.j)exp{-12ﬂ(~a )(VrlTB)}
corrected

fis corrected as follows [40]:

“where VriT3 is the distance moved since the first burst,

l Range profile distortion due to substantial target
‘point displacement caused by rotaton of the vector ?ﬁ; is

éa much more difficult problem, Fortunately target point

tdisplacement within a burst length is usually negligibly

fsmall and of little consequerce. For example say the
|

Etarget rotation rate is w=0,02(rad/s), trg =30 m.; then

- — . e

*A signature is the set of data associated with a burst
either before or after range compression,

; | 21




{tbe maximum range rate is vr=0.6 m/s. For a burst length

! -2 .
lof T,=10 s , the displacement -is Ar=0.006 m. For

2f
:£=500MHz, the echo phase shift error is ;;'Ar'= 0.004 rad

I

(0.000641 ),

‘2.2 Interpretation of Target Data

The MFS radar described in section 2.1 can be used as
:an  Inverse SAR (ISAR) system. The reference point will

be the center of rotation of the object. Its range L,

will still be kept constant. ry is called here the gross
| .

‘range. The ISAR will be modeled first in two dimensions.
}

: This model will be extended later to three dimensions.

h ith

In deriving Eq. (2.1.5) for the jt pulse in the

|

iburst, the following implicit assumptions are made.

1. The gross range r, is either constant or of a known
time variation. 1In practice r, is limited to an
accuracy of one range resolution cell. It is even
more difficult to identify the center of rotation
of an airborne target by virtue of its coherent
signai reflections.

|
;
|
i

i
:2. The signal echoes are specular returns. This means
; that the reflections can be approximated by

l : . ' . .

i_ physical optics. Echoes due to diffraction,

reverberative phenomenon, and creeping waves are

22
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"3, There is no atmospheric frequency dispersion., The

—_— ————

considered negligble. The specular assumption

l
|
i holds when signal wavelength A<<2a where a is the
! maximum radial extent of the target.
|
|
pnase delay from a target at constant range r is
the same at all frequencies.
4. There is no atmospheric propagation phase error.

That is, the delay phase error is neglible. This

holds for relatively short propagation path

lengths in the troposphere.

i Instead of a single point scatterer, consider a
|

! X N . .

rotating object ( w rad/s) with every point on it being a
|

scattering center as shown in Fig, 2.2.1. Let the

|
rotation vector W be normal to the L0OS. Suppose the far
1

kiald assumption (:0>>2a) holds so that thete is no range
H
curvature. Let {£ ,n) be rectangular coordinates fixed on

the object; Suppose at t=0, the (¢g,n ) axes coincides
gith the (down-range(x), cross-rsnge(y) ) axes, Also

!
SUPpOSe t=0 at the beginning of the first pulse (3j=0} in
!
ghe first  burst (i=0). Here the aspect angle is

synonymous to the angle hetween the x-axis and some

patticular fixed axis (f) on the target. The aspect angle
}t time t is equal to wt, where w is assumed to be

‘ .
constant. The (x,y) coordinates are thus related to the

{&,n) coordinates by
23
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(a) Y n
a
b1
Radar .‘\*
antenna Z(t) .Js; \
l, (g,n)
\ : >N
r
[+)
_ 13
(x + gy) = (§ + gn)exp{-jut}

(b

2f
% - mi_n
wuia c
ko= Ls(kmin M tmax) kB = kmax - kmln

Figure 2.2.1. 2-D Imaging geoxetry and the pupil functioa.
(a) Two dimensicnal target coordinates and the
rotating object. (b) The resulting 2-D pupil
function of the radar imagiug system.
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With sz sufficiently
small

With sz not sufficiently
small

Figure 2.2.2. Distorted data sampling patteim in the Fourier
domain for large values of wT, vs. undistorted data
sampling pattern in the Fourletr transform domain for

small values of w’I‘z.
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: (x+iy) = (E+fn)exp{-jut} (2.2.1)

Finally assume that there is no range shadowing* so that
at the wt aspect angle, the reflectivity of any point

}
i
i
scatterer at (&,n) is o( g, n;wt). The point scattering

i coefficient of the same point scatterer is denoted as

' o{x,y;wt) where (x,y) and (&/n) are related Dby

|

Eq. (2.2.1).

The range vector r of the point (§,n) at time t is

r(t) = Eo+(£+jn)e"‘“’t (2.2.2)

|
Let r(T) be the initial distance of terget point (&,n)

:when the first pulse (i=0,3j=0) hits the target. The two
;way transit time for the first pulse 1is therefore 27,

! ;
'Since the second pulse is transmitted T, seconds later,

the target point distance when the sccond pulse hits the
target is r(r+T2). It is easy to see that the target is

"illuminated by a pulse only at the discrete times t=tij

| v
~where

i3 = ATRHIT, (2.2.3)

|
‘ for iao,l,Z,...,K—l; j°0;1,2,.oo'N‘1c

For any realistic object, shadowing cannct be avoided.
" But this assumption must be made for analytical
~justifications. .

|

l | 26
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Let

(E+4n) = pexp{jo}.
& i It follows from Eq. (2.2.2) that
r(t) = [rg+ p2+2r0pcos(mt-cts)]l/2
2 0 1/2
= r [1+(JL) +2 (=) cos (wt=¢) ]
3 0°" 'xy Yo

i With the far field assumption,

(2% <22

ro I.'o

)2 <<

=
rf
]

ro[l+2(—p—)cos(wt--<1>)]l/2
Lo 2

e - p ' :
r0[1+ rocos(wt ¢)+0(;2)] (Taylor's expansion)
o Ls
tpcos {(wt-¢)  (far field assumption) (2.2.4)

]

P

e

Lo

iIt follows from Eq. (2.1.5) that the data from point

' target (&,N) alcne is

jamk (r(t)-ry)
D (i,3) = TBB'o(E,niut)e 2

j2rk,.pcos (wt-9)
: = T,BB'G({,njut)e’ I .

The variable doppler phase shift of the scattering point

is thus
kocos (wt=-9)

. where k=ky when tel[iT3+jT,, iT3+(j+1)T3] for all

|
»values of i, Jj defined previously. Since the data is

é Tsampled only at t=t; =iT3+jTy+1, the sampled data becomes
: l

i

l L3 +

a Dy (i,3) = T)BB'0(§,niut,,)
S l _ﬂnkjpcos(in3+jmT2+w¢-¢)(2.2.5)
. : P e
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Let 6i=in . Typically with w=0.02 rad/s, '1‘2=10~2 s,

i and with no range ambiguity,
wT<wT, = (0.02) (107%) = 2x107* rad.
wT can therefore be dropped from Eq. (2.2.5). Then,
jkjpcos(e—¢+jmT2)

R ' .
, Dr(l,j) TlBB o(g,n,wtij)e . (2.2.6)
| Let .

.. AT

‘X3, Yi are therefore respectively the range and
:cross-range distances of the point (&,n) from its

‘reference center at the beginning of the ith burst,

) —j(6.+ij2)
Re{ (E+In)e }

pcos (8, ~¢+juT,) .
, . =J (JuT )
Re{\xi+ayi)e

]

xicos(ij2)+yisin(ij2) ?2.2.?)

iUsing the previous example again, but with the number of
gpulses per burst being X=256,
i JWT, < Kur, = (256)(0.02)(10-2) = 5.].2:(10"2 rad.
!Therefore jwr, can be dropped from Eg. (2.2,7) and the
%following approximation can be made,
pcos(ei-¢+ij2) 2 Xy
= Ccosei+nsinei (2.2.9)

; Substituting Eq. (2.2.9) into Eq. (2.2.6)
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| Coay = ] Jkixy
D.(i,3) = TlBB'o(xi,yi,wtij)e J (2.2.10)

! Another way of looking at the problem is that one would
| .
. like to keep ij2<(ﬂ/2 by forcing
|

. m
' T, <<urx (2.2.11)
!
}

. such that the approxzimation in Eq. (2.2.9) still hoids.

For imaging a seaborne target with w=0.6 rad/s and K=256,

i
I
|
ione would want to choose the pulse repetition period T2

t such that
~2

T., <<n/(2x0,.6x256) = 10 sec

2

which corresponds to a pulse repetion frequency of at

i

éleast in the order of lKHz.

It follows from Eqg. (2.2.10) that the composite data

!from the entire object is

Coay . .
, D(l,j)-—TlBB [fc(xi,yi,wtij)e

Target
Area

J2nk,x
371
dxidyi .

- Carrying out a coordinate transformation with Eq. (2.2.7),
| g2k, (Ecosf, +nsind, )

Target
Area

d&dn

FIf O(E,n;wtij)is independent of Wty and

_ A Jenf (EcosH+nsinb)
, 2(8,£)=)Jo{E,n)e dEdn (2.2.12)

i = 2-D Inverse F.T. of a({,n).
. Then TlBB'Z(Bi,kj)

|
L_ 29
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} Therefore, for a general object the data collected by
' the MFS radar can be ihterpreted approximately as the 2-D
I

| Inverse Fourier transform of the target reflectivity
|

i
ifunction o(E,n). i corresponds to the aspect angle 8; on
gthe object at the beginning the fﬂl burst; jthcorresponds
!to the jth spatial frequency component kj of the object

reflectivity function,

For most of the timed(&,n;wt;jy) represents the
‘diffraction coefficient of (¢,n) depending on its
' neighborhood. According to GID [20], both “the magnitude

and the phase of o will change with 0

In the case when wT, is not sufficiently small to be
neglected, one needs to substitute Eg. {2.2,7) iato

Eq. (2.2.6). Carrying out an analysis similar to the one

above will lead to
D(i,j)leBB'Z'(kjcosijz,kjsinijz) (2.2.13)

Iwhere ' -1 3
2 (fx,fy)—z(t¢n (fy/fx), fx+fy ).

Thus even when wT, cannot be neglected, the data still

frepresents the two dimensional inverse FP,T. of 0(x,y)
|
except that now the transform domain sampling follows a

{
, curve

1]

£,(3)
£,(3)

kjcos(jmTz)

(]

kjsin(ijz)
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' where fx(j) and fy(j) are radial ang cross-radial

. dimensions in  the ‘transform domain. Figure 2.2.2
i
fillustrates this distortion in the transform domain

. sampling.

2.3 Generalized Three Dimensional Fermula

The three dimensional representation of the scattered

wave from a rotating target was formally derived [4] in

 terms of the wave propagation vector k and scattering

}
'point vector X. With reference to Fig. 2.3.1, the far

 field electromagnetic wave incident on the object can be
i
' approximated by a plane wavce
I
_ -qamft JK- (R+T,)
Ei(t,x)= £qe ‘e (2.3.1)

where f is the signal frequency, E; the field strength of
' the incident electromagpetic wave. If one uses
Kirchhoff's approximation one gets for the backscattered

|
| far field Ly at the receiving aatenna [4)]

j-}_('(;+r—0)
. ff E, (t,%) & T a5 (%)
s i JAr k
Illuminated 700 (2.3.2)
suriace T

where A =¢/f, dg is the incremental area vector normal to

{
' the target surface, and

g, = K/[K|.
Define
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i

Fhox (2.3.3)

fand -

, -IBeR.
o & L ff e P+dS(x). (2.3.4)

2/ illuminated
surface

By substituting Eq. (2.3.,1) into Eq. (2.3.2) and using the
'relations in Egs. (2.3.3) and (2.3.4) one gets

E - J(2Tft+pe S:‘o)

E = o(Ple " (2.3.5)

S

2/Er0

By restricting the class of targets being observed to only

'convex objects, p(P) can be rewritten as

p(p)= ~L- ff e p+ds(x) (2.3.6)
ki

!whefe n is a unit vector in the direction of dS. By

| inspecting Eq. (2.3.5) it can be seen that p(p) is a

I
:measureable quantity by homodyning* Eg and phase shifting
I

'the resulting baseband video by a phase equal to 5356

i
which can be determined apriori. opo(p) can therefore be

“treated as the baseband video signal of a coherent radar
isystem except that other than being baseband, it |is also‘

- —— D S W e v D -

'*Homodyning is a demodulation or "mixing down" operation
“in which the video signal riding on a carrier frequency is
"mixed with a 180° out-of-phase carrier of the same
lfrequency resulting in a baseband video.
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phase shifted by an amount equal to B.T;. Since the video

. signal can be easily measured by a standard radar system,

it is justified to concentrate only on p(p).

Since
}
|

p(D)

is the video signal measured off the illuminated side of

the object (i.e. p'n>0), the video signal measured off the

inon-—illuminated "back" side of the object is p(-p). It
' follows from Eq. (2.3.6) that
5 Sye . d ~IPX 45 (%
p(p)+p* (-p)=r—— J.e prds(x)
/7S (2.3.7)
S
.where S is the entire surface of the convex body B. From
x
;the divergence theorem
N f —
o (B)+p* (-p) = —L- | v. (pe P ¥)ax
2/7Y
B
2 f _i=.z
-—J LD
= 2| ™'P ¥ax (2.3.8)
2/ Y
B
2 - -
=—£*fY(x)e JPX dx (2‘3'9)
2/7

where Y(X) 1s the characteristic function of B defined as
_ 1
y(x)=

2/
P

X €EB

0 x £ B.

I1f one further defines

I'(p)

o

[o(p)+p*(-P) ],

it follows from Eq. (2.3.9) that I(P) and Y(X) are Fourier
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transform pairs:

'@ = [v@e P ¥ gx. (2.3.10)

iThis is Bojarski's identitv.

Since P(p) and @(-p) are respectively the phase
shifted baseband video signal measured off the "front" and
"back" of the target, I(p} represents a composite phase

shited baseband video signal measured off the entire

target body. The only difference with I'(p) is that it is
;scaled by the propagation vector parameter p. By the way
'the characteristic function Y(x) of the target is defined,
gy(?) represents the spatial distribution of the point
Escatterers on the surface ' of the target,
!Equation (2.3.10) thus shows that by measuring the
icomposite phase shifted baseband video signal I(p) for all
:values of p (in frequency f and aspect angles), the
fcharacteristic function Y(x) of the target can be obtained

. by simply Inverse Fourier transforming TI(p).

the target-data relationship in terms of I(p) and the

I
: Now it will be shown that it is unnecessary to pose
lcharacteristic function., A direct relationship between

. the target “reflectivity" function 9(Xx;K) and the signal

freturn data D(k) will be derived 1in 1line with the 2-D
i
. model used earlier,
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Write the transmitted signal (or beam) in vector form

Sy e e T T

* x 5
kig = (050850 =) (2.3.11)

) ., .th
where ai=beam azimuth at the beginning of the 1t burst,
€i=beam elevation at the beginning the ith‘burst,

fj=carrier frequency of the jth pulse.

Let f0=vector from the antenna to the farget center or

s

point reference,

=vector from the antenna to a p>int on the target.

Note that kjj can also be written as

‘where k=signal wave propagation vector

A=signal wavelength (=_C
2nk

1

=
-With this new notation, Eq. (2.1.5) can be rewriten as

|
i 9 = k/|k|

b % = ' ] I e Py
i Dr(kij) T,BB exp{a2nkij (x ro)}.

‘It follows that the point target ‘vector is

x(t) = x(t) - ¥,. (2.3.12)

im

;For the same reason as in the 2-D case, the data are
I
sampled at tatij=iT3+jT2+r ¢s in Eq. (2.2.3). The data

l —
. from a point target x can thus be written as

YO e T

BB' 0(x, . ;K jz"Eij'xii

ij‘kij)e

Dr(Eij) =T

-

- where iij stands for  x(tyy. If the scattering

.
ca
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[
i coefficient o stays constant with aspect change,

°(xij’kij) = O(Xij).

If all the assumptions made for the 2-D model hoids,

 the compcsite data from the 3-D object is

J.F jznﬁij'iij
=\ oo — - |
D(kij)*BB J O'(Xij)e dxij (2'3.13)
Target
volune
Let T
2 (X) A ] o(i)egznr X ax
= 3-D Inverse F.T., of o(X).
{rhen

D(kij) = BB'Z(kij) .

. Again as with the 2-D case, D(Ekj) can be interpreted as
|

i the 3-D spatial frequency specirum of the target

" scattering coefficient.
{

an important result of Eq. (2,.3.13) is that the

- Fourier transform data in the k space of the scattering

; th !
"coefficient function for one signature (say the 1{

:signature wihich corresponds to the ith burst) coincldesz in 2
1direction with the actual physical aspect angle dire<tion
Eof the object. One can now directly assoclate the aspect
{angle of the object with the angular dimension of the
?Inverse F.T. data in k space. In practice because the

~available signal frequency is limited in the lower end

;(fmin) by the scattering model and in the upper end (fmax)
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ilimited by technology;, the available F.r. data is
:contained in between two concentric spheres. This is

:illustrated clearly in Fig. 2.3.2.

In the 2-D model of section 2.2, the target is

fassumed to be rotating on a flat platform {say (xl,xz)

~plane) with rotation vector @ in the X, direction.
|

iBecause the incident radar wave is parallel to this plane,
|
;one should get the Inverse F.T. data within an annula
|
'ring on the (x,,%x,) plane as shown in Fig. 2.3.2.

i
- However, if the rotation platform is not rotating in the

' same x4 direction at all points in time, the scattered

‘data will not all lie on the (xl,xz) plane, This is

expected to occur for aircraft, which at any instant in

. time will have pitch, yaw and roll besides the rotation

effect due to translation. A similar situation occurs for
seaborne targets in which one has again the roll, pitch
and yaw motion besides the rot:ition effect due to
translation. The major difference between an airborne

target and a seaborne target is that for most cases the
i
|

long-term translational - rotation effect would be the
predominant rotational motion of an aircraft; meanwhile, it

“is the shorter term roll, pitch and yaw that wouid be

fptedominant for a ship target, especially in high sea

i
" states.,

Now we have a compact model in which all kinds of
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©
Figure 2.3.1. 3-D radar target mocdel for Bojarski's
identity.
%3

3-D solid sphere

desired data
in 2-D wodel

actual data

due to target \_/ \
roll, pitch, and yaw\‘y_“__",,#”

Figure 2.3.2. 3~D data in Fourier domain showing data
confined in concentric spheres of radii kmin and
{Note that the deviation of the F.L.
daia from the planar annula ring due to target

rotation vector changes.)
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I

. rotational motion with respect to the ILOS can be
|

icompletely accounted for in Fig. 2.3.2. One should keep

'in mind that this is a direct result of the fact that the
gpropagation vector (k) direction coincides in direction
with the 1Inverse 7Z.T. vector (p) in the data. An
important point here 1is to realize that whatever the

!
t
!
|
i
'
l

. absolute rotation rate vector @ is in the absolute fixed

I

I ——
i coordinates, only the components of 0 that are

perpendicular to the LOS contribute to the . imaging
process. Therefore, where the data lie in the 3-D sphere

' depends only on the aspect angle of the target with

respect to the LOS. The component of o that is normal to

the LOS determines only the scale along the aspect angle,

: This is obvious from Fig. 2.3.2.
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Chapter 3

| POINT SPREAD FUNCTION, SYSTEM RESOLUTION

3.1 Spatial Frequency Units

o 8

In Eq. (2.1.5) kj was used instead of for the

reason of simpler notation., It became clear with this

substitution that for a given burst (say the ith burst),

:the measured data given by Eg. (2.1.5) was the spectral
I

" signature of a point object. That is, if the target
ireflectivity and ranges were constant, the data
lcorresponding to signal frequency fj was a measure of the

k;h spatial frequency component of the point object., By

incorporating the assumptions made in secton 2.2, it was
further concluded that the radar data D(i,j) represented

along the direction of aspect angle 0y the kth gpatial

J
frequency component of the target reflectivity function,
~This notion was easily extended to the three dimensional

moael in which the spatial frequency (kj,Oi) was replaced

t

by a vector Elj- kj is therefore a more wuseful notation
1

‘when it comes to relating the radar data with the target

: th
reflectivity function. One can now mnmeasure the kj
spatial frequency component of the target by using a
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i carrier frequency fj such that

ka: =X_:.
c ]

?where Aj is the carrier wavelength,

Justification for using spatial units can also be

;found in SAR. For one thing, equations in SAR have been

i

,derived in a variety of ways by many authors, In almost
|

“all of the derivations, the time dimension has been an

~essential part of the formulae being derived, and the
|
' meaning of the formula sometimes becomes obscured in the
I
:many factors in Jlved in it. Yet, in almost all the
|

applications for which SAR was designed, the spatial
digtribution of the object is the ceatral objective. It
seems reasonable, therefore, to put the equations in
spatial units rather than in temporal units., Ofcourse,
-when one is concerned with implementation then temporal

~units must be taken in consideration. Another reason for
|

fpreferring- spatial units is the fact that the echo phase
|

. is determined by the relative spatial distribution of
i
scattering centers,

The first basic equation relating temporal wunits to

"spatial units is

t

X = j vdt! (3.1.1)
0

‘where x is the spatial distance of an object at instant t,

[ 4l




[travelling with velocity v along a linear path,

Next, the Doppler frequency which is usually

considered in temporal units, can be expressed in spatial

junits. Consider for example the strip mode SAR geometry
!in Fig., 3.1.1 where the aircraft is flying a straight line
along the x-axis with its antenna looking down and forward
'"at squint angle es. Consider a point target C. The
aircraft is at point A at time t=0, with slant range R
B 1is the aircraft position at any other instant t,.
. Suppose the transmitter temporal frequency is £

. (wavelength 1, ), then the phase of the echo from point C

will be
= 2R(t)
o(t) = 2nf0 —
After rearrangement,
¢(t) = 2mk,R{¢) (3.1.2)

Iwhere kg is the spatial frequency associated with f5 given

fby the conversion equation

‘ k., 49, (3.1.3)

i
;Hence, phases can be written in terms of spatial frequency

H

;and spatial distance wusing the conversion Egq. (3.1.3).

This representation is also mearingful from the optical
[

‘signal processing point of view. If a monochromatic

L___“ 42
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!
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aircraft velocity
aircraft position at
C time t=0

‘ initial slant range
at time t=0

= aircraft altitude

= gquint angle

S  (down looking)

» <
Bon

=
n

Figure 3.1.1, Doppler geometry for Strip wode SAR.
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[ _
jsource at C illuminates the x-axis of Fig. 3.1.1 with
!
, wavelength c/2f0, the phase of the illumination at any
|

‘point along the x-axis trajectory relative to the phase at
isome fixed point on the x-axis (say point A) will be
|

Fh(x) = 2ﬂkOR(x). The instantaneous spatial frequency at
|

|

iany point x due to the phase ¢(x) measured along the

—axi i : 1 d¢(x) =k dR({
' x-axis will in fact be .= 9¢9(X) =k dR(X) .  However, the
Y 2T T dx dx r-

0
instantaneous Doppler time frequency is

1ode(t) _ . dr(t) _ |, dR{x)
77 dt ke =& = [ko d_x‘“‘]"'

Therefore the instantaneous time Doppler frequency at
point x 1is related to the spatial frequency of the
illumination on the x-axis by the velocity v. For this
reason, the spatial frequency can be treated as the

spatial counterpart of the instantaneous Doppler time

frequency with the velocity v as the conversion factor.

We will call it the Spatial Doppler frequency.

For another example let us look at the strip mode SAR

again as in Fig. 3.1.1. Using the cosine rule on triangle

ABC

2
R(t) = \/RO + (vt)? - 2Rgvtcos (0,) _ {(3.1.4)

Expanding in Taylor's series, then

’
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§ vtcos® 2 (3.1.5)
b R(t) 2 R,[1- s 4 {vt)
v 0 R 2R%
A 2 o] 0
. 1f one keeps only terms of 2nd order in the Taylor's
| Series expansion. Substituting Eq. 3.1.4) into
e | Eq. 3.1.2),
vtcost 1 t)2
! ¢(t) = 27k .R. |[1- S+ 2 W (3.1.6)
! 00 R 2 p2
0 0
&
i With Eq. (3.1.1)
X xcoseS 1 x2
, ! ¢(x) = 27k Ry |1~ -;——— t 3 o2 (3.1.7)
0 0
| If the Doppler frequency is defined as
= b1 de .1.8
fD 21 dt (3 )
i then Eq. (3.1,6) leads to 5
. . 2vf0coseS . 2v fot
¥ D *
c c
@If the spatial Doppler frequency is defined as
|
A 1 dd(x)
‘ | kp = 21 dx
- then Eq. (3.1.7) leads to
N X_ 3.1.9
%y kp kocosas + kO(RO) ( )
; l
% . One now has the Doppler frequency in a very compact form,
: ; kD is the rate of change of echo phase per unit distance
] I
i
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[
‘travelled by the aircraft. This is the actual fundamental
] E ’

idoppler which determines the system's imaging ability.
;
. Besides, kp is a function of the distance x of the
{

iaircraft at point B irrespective of what perturbations

;might exist on the velocity v. Notice also that the first

|
'Doppler term in Eq. (3.1.9) is due to the relative
|

: translational velocity (along the line of sight) between

|

‘points C and A. This component is called the
|

ftranslational Doppler (kt). It is given here in spatial

P

i frequency units, i.e.
ke = -kocoses.

|

fThe translational Doppler is zero for the antenna beam
?which is directed broadside at 6, = 90°, For more complex
:trajectories of the aircraft, ki is more complicated with
|the squint 98 being a function of time. This is related

, to the problem of motion compensation.

The second term ko(f—) is called the differential

0
Doppler (kgy) in spatial frequency units. The differential
?Doppler is solely responsible for the high resolution
|
;imaging property of synthetic aperture radar systems.

‘This is in fact true for all modes of SAR.

k, = k(=) .
d 0 Ro

Finally if one compares Egs. (3.1.8) and (3.1.9), the

.spatial frequency Kk can be converted readily to time
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= frequency fD by

£, = vk (3.1.10)

3.2 Point Spread Function in the Continuous Domain

As noted -earlier in section 2.3, the Fourier

transform (F.T.) data was restricted to two concentric

et L TR PO T RN O T ST L
S ik il 2 ; X

spheres. For the two dimensional model the data was

2f .
restricted to an annula ring of radii I oy ip and

max _ . .
= kmaf If the data were available for all

. frequencies and aspect angle, the target can be

‘reconstructed by taking the F.T. of the data.

Since the data represents the 2-D F.T., of the object

»

in the 2-D model, and since the object can be
. reconstructed by taking another 2-D F.T. on the data, the
fentire radar system and the reconstruction processor can

!
be lumped together and viewed as an imaging system, As

-

ésuch, the. annula ring structure in the F.T. data can be

“viewed as the pupil function of the imaging system. The

i

L 'F.T. of this pupil function then gives the point spread
|

_function (henceforth abbreviated PSF)or impulse response

.of the imaging systenm.

| ; Suppose there is no perturbation on the rotation
L !

¥ ;vector of the target. The annula ring pupil function can
: i

be written as an isotropic function es follows,

|
| R




"
222

G(k) = circ(k/kmax)~cir¢(k/kmin) (3.2.1)

where 1 |xiil
circ(x) =
0 otherwise

;Polar coordinates have been used for convenience. The PSF

'is thus

B{G (k) }

g(p)

Ty CrkpaxP) - x Iy (2mkpinP) (3424 2)

max min
p P

1]

‘where #{+} indicates Fourier Bessel transform,
p = radial polar coordinate in the spatial domain,

Jl(-)= Bessel Function of the lst kind, order 1.

'The PSF of the radar imaging system is plotted 1in
!Fig. 3.2.1. It is difficult to predict the behavior of
Ethe PSF from Eq. (3.2.2). Instead, some approximate forms
!will be studied.

PSF for Small Values o [}

. wr——  Svt—

From the relation

X
1
0

i

‘the PSP can be written as
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1 2‘"pkmax |
g(p) = 5 ﬁJo(E)dg-
2Trpkmin

Suppose the "narrow" band assumption holds, in which

kO >> kB

: 1
. where k0 = f(kmin+kmax)

kB = kmax-kmin'
i Then

2mpk

k max
| g(p) » 0 S Jo(g)dg (3.2.4)
| 0
| 2"‘:’er\in

iThe integration interval is linearly proportional to ¢,

zHence for small p(<<§%), JO(E) is essentially constant.

| B
EThus

| glp) ¥ 2mk.k.J.(21k

okpdp (21 g0) (3.2.5)

;This approximate PSF is plotted in Fig. 3.2.2a with

!
kB = O-IkO.

PS¥ for Large Values of »p

For large p one can use the following approximation

|
|
|
|
. [page 401,28].

3,(6) =y cos(e- § - I (3.2.6)
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, Substituting Eq. (3.2.6) into Eq. (3.2.4) and using the
t

narrowband assumption again, one gets by integration

1/2 K

-2k _
9(9)2(—-—g— )p 3/2sin(2ﬂo§B)sin€2ﬂpko) (3.2.7)
T

The closeness of these approximations is evident from

'Figs. 3.2.2a,b. With k;=10k,, the approximation for smail
p In Eq. (3.2.5) is accurate up to about l.ékaly' For
large ,, | '

lg(p) |« p~37/2

The beating phenomenon for large p which is predicted in

' Eg. (3.2.7) is also evident in Fig. 3.2.2b.

|
!
g Even though kB<< kc for the current system, in
H

_practice the temporal frequency corresponding to ky can be
i

~very wide in bandwidth, for example as high as 1 GHz.

E

3.3 Point Spresd Function from s Different Point of View
i

§
i

_ Thi: point spread function in the previous section was
|
~derived as an optical system. Here we will try to
i
“understand the system in a different way whizh will allow

1

;us to  analyze the system more as a matched filtering

.prob]em.

Suppose point object Py is located at polar
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:EQ. (2.2.6) the recorded data is proportional to

|

!
|
i
!

i
i

- first. From the expression above for G(0,k), one can see

|
I

“will be introduced, Therefore in order to identify a
‘point scatterer at range %, G{6,k) can be passed through a

' matched filter corresponding to the linear phase returns

i that for each point scatter P at distarce 2 along the LOS

m———————— ————

coordinates (pOIO) with constant reflectivity o4+ From

jZHkQOCOSe

G(€,k) = o_e

0

where (8,k) are polar coordinates in the F.T, domain,

Let the data G be procesged to be resolved in range

from the center of rotation, a linear phase exp{j2rke}

from that point scatterer. The weighting (impulse
response) for this matched filter will be [ef27ke)*

over all possible values of k.

Thus the matched filter output is

g(8,2) = [G(e,kke""?““dk.

This is the one -dimensional Fourier transform of the
collected data. Therefore, Fourier transforming the data
also corresponds to matched filtering the data to get

range compression,

Suppose one has a full range of continuous data for

a.l frequencies between Knin and kmax and for all aspect

53 ]
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'angles 8e(0,21) . Taking the l-dimensional F.T. on G

~with respect to k will lead to
‘-l/ZkB
g(e,Z)QJ G(8,k)e
~1/2k;
J2mk [pocose-zl (3.3.1)

= oosoe 0

|

; : SO= 51nc[kB(2~p0cose)]
i

|

~J2ﬂk2dk

sinc(x)= sin{mx)/7mx
Now the data is resclved in range and the function g(6,4%)
is called the range cowpressed data. It is obvious from
EEq. (3.3.1) that g(6,%) peeaks at 2= pocose. This means
ithat the matched filter response peaks only when the
»matched filter parameter % matches with the instantaneous

range p,cos .

|

E After range compression, the phase of the data g(6,%)
iis proportional to only Ko and the range differential
:Docoso -tbetween the point object and the point center O.
_The magnitude of the data is proportional to 80(2) which

:peaks at & =p_.cosH, However, range compressed data

0
having the same characteristics as g(6,8) can also be
-obtained from a completely different radar system with a
completely different signal format., Thus, if the target
is rotating slowly enough so that it satisfies the
conditions discussed in chapter 2, one has the option of

choosing other radar systems to achieve the same imaging

 property. For example a linear FM signal with _.ynal

|
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ibandwidth '%%RB and mean frequency .é;ko will give
gessentially the same characteristics as the multifrequency

!
"bursts.

In the 9 dimension, one can again use the matched

:filtering concept tc reconstruct the point image of the

point scatterer P Since the range compressed data from

0'
Py is proportional to
| 2wk [pcos6-1]
| sinc[kB(2~p0cose)]e ‘

+ideally the matched filter is two dimensional.
|

| In the 6 dimension, one can again use the matched
filter concept to reconstruct the point image of the point
scatterer Py. Since the range compressed data from Py 1is
proportional to
i jzuko(pocose—ﬁ)
: sinclk (4-p,c0os8)]e '
[ B G

ideally the matched filter is two dimensional in nature.
_The response of the filter matched to P(p ) is

: 1
BT

\
1
i

a 2w ~j2pk jpcos (8-¢)
j sq(O,f.minc kalﬁ»pcos(ﬁ-é)]ﬂ dods.
0 *0

In practice, this implies that long processing time will
“be needed to implement the filter. Instead, an

-approximate filter impulse responze function will be used

. as follows:

1
t
|
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-j?ﬁkabébéiél¢)

LPN

i | sinc kg (£-pcos (8-6)) § (2-pcos (0-¢) e

EUsing the expression for g(6,%) in Eq. (3.3.1) the filter
'response will be
. ' a2m
| ! o(P)= 5%:] g (8, %) sinc(ky(2-pcos (6-9)) ] 6 (2~pcos (6-¢)
‘ 0J0

~j2nk0pcos(6—¢)
e deds

2m
8 g
3 — 0 i - - " -
‘;? = o S sinc kB(pcos(e $) pocog(e ¢0))
0 janB[pocose~pcos(e~¢)]
‘e dae,

‘where the ¢ dependent phase term is dropped because only

‘the magnitude of the matched filter response will be of
» interest here. The above expression for the matched
;filter can be observed as being a contour integration

along the contour

2 = pcos(8-¢).
!
'By referring to Fig. 3.3.1 and using the relation

Lo 2 2_

L Pl = opy + p7-2p pc0Sd

o= tan'l B~g§%§%E—),the following simplification can be
5 0 made

% %cos -pcos(8-¢) = p'cos{B+d'). Thereforea

. 9 2 ~J2nk o' cos (2+4")

g (P) = 5 sinc(k.p'cos(0+¢')])e aé

: 1 B

| 0
B But p' is the distance POP between the target points,
N ]

. j (%9¢') is the angle between P P and the LOS. Therefore
' p'cos{ B ¢') is the projected length of POP on the LOS. We

fcan, for convenience, make a change in variable 0'=0+¢' |

fThen the filter response at point P is

\
r
1
B
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|
. i Figure 3.3.1. Projected distance onto the LOS
é : of point P 1is pcos(0-~¢), and
of point Po is pocosﬁ.
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~j2nk0p'cose'
sinc[kBp'cose]e de’

0 (3.3.2)

g(p) = -%

Qs

This means that any target point at distance p' away from
|

f P0 will have a non-zero contribution to the reconstruction

|

Iof PO, proportional to o(P). o(P)/o0 is by definition the
|

-point spread function of the imaging system. The PSF in
|

~expression (3.3.2) can be rewritten as

-2 k0+l/2kB
- ] ]
ek ?ITTS j e 72TkP CO80 gk g1 (3.3.3)
0

gle")=

!
I
|
|
!
‘ 0
|

k0-1/2kB

which is exactly the same as Eq. (3.2.2).
;'
: Even though we arrive at the same point spread

lfunction from both the optical system view point and the
;matched filter point of view, the latter approach gives us
;a more intimate understanding of the reconstruction
jptocess. In fact it suggests a method to reconstruct the

target, which is more suitable on a digital computer. Its
:further importance will also be obvious when we come to

4

" the problem of sampling requirements,

*3.4 Resolution of the Imaging System

\ The resolution obtainable from an annula pupil
I
function will be of interest here. Just as in the problem

_of defining the bandwidth or the time width of one

|
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L ;dimensional signals, we are faced with the problem of

’ ldeflnlng the resolution of our system. There are two ways
'of looking at the resolution of the system, One is the

|

“usual resolution criterion used in optics., The other |is
|

s ' from the signal bandwidth approach.

|

Resolution From the Point Spread Function

|
]

¢ i From section 3.2 we have seen that for small vwvalues
l

of p, he PSF can be approximated by JO(anopS. With

"Rayleigh's criterion for resolution,

i I (21k p) = 0
; 0 0" o=

}where ) is the Raleigh resolution, Therefore
3 f

;2nk06 = 2,4048 and the Rayleigh resolution is

|
|
; 0.382

L. 282 (3.4.1)
. 0

|

-~

This resolution limit is good at least for kB/ko ratios

fless than 0.1. The surprising result here is that the
‘bandwidth becomes insignificant with this resolution
élimit. To show the importance of kg in the shatpening of
:the point spread function and therefore the ghatpening of
L fthe tesolution limit, we will compare two PSF's, one with
és' ;k0= 10ky and the other with k, =% kg . The second case

{ _tepresents a disc pupil function circ(k/kg). The

‘magnitudes of the PSF's are shown ‘in Pig. 3.4.1. The

>
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~20/k

L

Annula ring pupil function

kg

Disc pupil function

Figure 3.4.1, Comparison of point spread functions for the
annula ring (koe lOkB) and the disk (k0~ kkn)

pupil” functions.
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fRayleigh resolution of the disc pupil function is 0.61/kB
i compared to 0.38/k0 for the annula pupil function. The
:improvement in resolution from the disc pupil to the

annula pupil is
; 0.61/kB n

i b—:?m; = 16 fold.

Unfortunately, we are getting this resolution
improvement by paying a price at the side lobes. The
first sidelobe for ring pupil PSF is approximately
-4dB (0.4) while that for the disc pupil PSF is

!
- approximately -8.7dB (0.135).

Comparing with the PSF of a rectangular pupil

' function rect(k/ZkB ) the resolution improvement is even
!

‘more dramatic, but again with a worse sidelobe level. The
‘resolution and sidelobe levels for the three systems are

' summarized below:

TABLE 3.4.1

! RESOLUTION LIMIT AND SIDCLOBE LEVELS OF
| DIFFERENT PSF'S.

Pupil Function Resolution sidelobe Level
. | Annula Ring (k0=10kB) O.38/ko -4.0dB
, .
| Disc (radius kB) 0.61/kB -8.7d4B
% Square (length 2kp) 0.5 /kg ~-13.44B

Even though kg does not show up in the expression

for the resolution 1limit of the annula pupil PSF, kp

I , 61

[P




f - T T T s e s ey

"affects the level of the sidelobes. The effect however,
is not significant., The table below shows the change in

sidelobe level with respect to kB .

TABLE 3.4,2

VARIATION OF SIDELOBE LEVEL WITH BANDWIDTH

| kB First Sidelobe level
| 0.1k, | -4.01 dB
5 0.2 ko -4.05 dB
! 0.4 ko ~4.37 4B

i
3.5 Resolution From the Doppler Bandwidth of the Signal

The resolution of the system can also be obtained

from the signal bandwidth of the radar returns. For any

iconstant aspect angle 6 , let us call the projectien space
data (range compressed data) g(8,L) a range profile. A

range profile is therefore the projection of the target

onto the LOS and then convolved with the sinc(f) function

due to the narrowband property. From Bg. (3,3.1), the

projection of a point target at (00.0) is

i
i +52ﬂk000c059
g(0,t)=0,sinc(k, (R-p . cos8)]e (3.5.1)
i 0 B 0
This can be rewtitten as
' .‘fZﬂkopo -.‘iZﬂkopo(l-cosB)
g(G,i)=oosinc(kB(£-pocoso)]e ‘@

%
{
|
(
H
,‘
1
e i - 62,
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{ .
i As in Fig. 3.5.1 the phase term 1in the last
'3 ;exponential is the phase due to the distance of the point

!target from the initial point at 68 = 0. The relative
| .
.phase of the signal at aspect angle 9§ is

y ! ¢ = 2nk0p0(l-cose)

., The incremental phase change when the aspect angle makes

|

‘an incremental change A8 is

sinb A8

| N3 N
; l 8¢= % 48 = 21k 0,
|

This is the phase change along the contour 2 =.pycos8 .

iwithin this angular increment, the point target traverses

- ‘an arc of length py408., The spatial Doppler frequency of

1

‘the signal can be defined as

| K

A L change in signal phase
= distance travelled by point target

A0

= Rl e s
AG+0 2ﬂé500

P . o Y 3.5.2
Thus kq = ko8ino ( }

‘The maximum Doppler teturn therefore occurs at 0= n/2and

minimum occurs at ® = 3 W2, In particular,

’ K = k
; dlmax 0
k CERS FUEN
; dlmin 0
Pt ‘The Doppler bandwidth kdnn 2kg. It is well known that the

.inverse bandwidth 1is a good measure of the resolution

fobtained from a signal. The resolution of target points
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- Pq (1-cosb)

Phase recorded at aspect angle is
2p°(l«cosﬁ)

d = 2nfo
el 5 T
aﬂhopotl cosf).
Figure 3.5.1. Figure showing the distance of Po

along the LOS (vange) from the
initial point at aspect =0,
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r;iong a circular arc can thercfore be taken as

|
| 5 =
I A

(3.5.3)

1
\Q,
o o

-In other words, any two points sitting on a same circle of
; radius P can be resolved if their arc distance is greater

than §A' Since GA is independent of the radius p,, the

;
- for now) is uniform over the entire target.

ralso be isotropic., Thus, the above arc¢ resolution limit

“is alse a resolution limit in radial distance. The two

Since the pupil function is isotropic, the PSF must

?dimensional resolution can  therefore be  closely
Srepresented by 5A’

|
f The interesting result here is that e&ven though a
%completely different approachk is wusad, the resolution

t

limit from both the opticgl system and the bandwidih
iconcept agreed very closely. More importantly, both
approaches come to the saie conclusion that the bandwidth
ékB (in radial frequency) does not play a dominant role in
:determining the :esmlution. This conclusion S@ams
?conttary to the facs that for each €, the projection data
;(tange profile} resolution is determined by the inverse
bandwidth (k;l) . Because of this we should clarify the

relationships between resolution and kg and k. If we

i
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~consider only one projection data (range profile) from a
{

given aspect angle, the resclution obtainable 1is only

'along the line of sight and it is proportional to k;l .
iOn the other hand, if we consider the projection data over
fthe complete set [0,2n] of aspect angles , the resolution
'is proportional to k]& . Between the two extremes, both
'k, and k_ are expected to play an important role, This

] B
“will not be pursued further here until we come to consider

. the distortion {aberration) effects in practical

“situations,
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Chapter 4

DISCRETE PSF AND SAMPL1ING REQUIREMENTS

24.1 Disc-ete PSF

|

i ’ :

i The polar coordinate Fourier transform data in the
t

fMFS radar system is available only in discrete frecuency
?steps. The radial freguency sampling interval is
|

fAk = 2Af/¢c. There the data is discretized radially. 1In
"the azimuth direction, data are sampled only over
fincrements of aspect angle A9 = uTy. Because of this

‘radial and angular sampling, the PSF is no longer

available in a closed form as in Eq. (3.2.2).

|
|

! In Chapter 2, it was shown that the target
i

‘reflectivity function ¢ can be computed by taking the
Inverse F.T. on the radar data. In polar coordinates,
'+ let q(¢m,2n) be the cnmputed target reflectivity function.
Then

k
27 ,
k[ mex J2nks_cos (-4 )
0[ J G(6,k)e n it dkds (4.1.1)
Nﬁn

WO RE oy 0
' In order to compute the PSF, let G(g,k) be the data from a

;point target at (p=0, ¢ = 0); thus
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Glo k) =0 6(6 0. )G(k-k )
where ¢(x) is the usual Dirac delta function,
kj= kmin+ jAk for 3j=0,1,2,...,K-1
e.= iAe for i=0,l,2,..¢,N"l
; Ak= 2Af/c (spatial frequency increments

A8= aspect angle increment.

Then g(¢m,2n) can be written as the followirg 1linear

approximation

0
=

x‘
O
-
o
Q
o
M
o

N-

,_.a

J2nk R COS(1A9 ¢ )
e

g(¢m'zn) ¥ IR

o

!Here one is only interested in values of g(%n,zn) over a

discrete angular array of ®m= M8, m=0,1,...,N-1. The

. above equation becomes

F_i il 12rk % cos(i-m)46
B ALTE R “NE °0L Z € t4.1.2)
| j=0 i=0

. where g(m £ ) now denotes g(¢m,£n).
i Integrating over k first, the expression can be

- simplified to

fé: sin{nmKg Akcos(l—m)Ae)

nZ kcos(l-m)Am)

g(m, 2 J —%—

.eJanozncos(l-m)Am

;If ohe dlqcretizes 2 by setting Rn = sn/k!3 where s is g
!

scaling factor k kg/kg. then ”

W e . S— i . > g + T T S e e e e e e - e sy a— . ——————— i ———————— e <o s




X k ~1 gin(nsncos (i-m)A6)

SO .
1=0 Sln(ﬂ§~ cos (i~m)A6)
(4.1.3)
j2nk
e

0sncos(i-—m)Am

|
“Where g(m,n) denotes g(¢m,2n). The exact equality is used

'in Eq. (4.1.3) because g(m,n) is the linear approximation

of g(¢,,%,).

“Statement: g{(m,n) = g(0,n) ¥m,n

i.e. g(m,n) = g(n) is isotropic

 Proof:
KoKy k1Nl 21k 8, cos (i-m) 46
glm,n) = —gg=9, Z Z ©
j=0 1i=

' By changing variable, i' =(i-m)

-1 Nl Jan 2 cos(1 A6)

- 22, 53 5% 3.

NK j=0 Li'=-m i'=0
Note that N A48 = 27; the cyclic property of cos(i'l8) gives
cos (~nag ) =cos ( (N~m) Am)

' Hence

K k k-1 N-1 Nemel 2k 4, cos (19)

g(mn) = 2B o Yo D e

j=1 Li'=N-M i'=0

= 9(0:5)
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; We conclude from the above statement that  the
|

~discrete point spread function is isotropic 1if we

- discretize the angle ¢ with the same increment pg and
; m

“starting from the same initial angle. Because of this,

!
. the PSF in Eq. (4.1.3) will be plotted in one dimension

fonly, viz., in the radial dimension n. The figures in
-Fig. 4.1.1 are plots of g(0,n) versus n for kg = 10kg .
Figure 4.l.la is plotted for N = 256, K = 40; Fig. 4.1.1b

'is plotted for N = 512, K = 40; Fig. 4.1l.1lc is plotted for

S it s e e, P PR
Lt et

EN = 512, K = 20 except for a change in scale on n.
:

The most saliient difference between the discrete

pupil PSF and the continuous pupil PSF is in the presence

‘of ‘“periodic" «clutters for the discrete case. The
function g{n) 1is ‘"periodic" in the sense that the

'relatively significant values of the <£function occur at

‘periodic intervals. Moreover, the period P of such

repetitive structures is approximtely

N ,-1 :
B k *hoe
| ? 2 0 (4.1.4)

i The empirical relation in Eq. (4.1.4) also indicates that
?the period is independent of the range sampling rate (K).
!By doubling N from 256 to 512 while keeping K constant at
%40, the “period" of the clutters increases twofold as
ishown in Figs. 4.1.la and bk, A different kind of clutter

ithat does not obey Eq. (4.1.4) appears beyond p = 20/kB
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ifor K = 20, N = 512. This fluctuating clutter seems to be
%a result of K value because it shifts with K. Another

‘point of interest is that while the peak of the clutter
|

-decreases monotonically with its order, the "width"
ilncreases. In the actual 2-dimensional plots for the PSF,
Ethese c¢lutter will show up as concentric annula rings with
|the radii being approximately jN/27 (in ko units).

\ Figures 4.1.la,b,c also show that the PSF g(n) is
!pretty "badly behaved" beyond the first clutter. It also
lseems like that the clutters are additive in nature.
ETherefore if the PSF for N = 512 is subtracted from the
zPSF for N = 256 with K = 40 in both cases, the first
1c1utter should be pretty well isolated, Figure 4,1.2
%shows the difference between the two PSF's, Surprizingly
-enough, the vfirst clutter does appear to be isolated
‘because it looks much more 1like some ‘“well behaved"
tfunction, Note that o ranges from 0 to 10/kB in this
tfigure. The peak of the fiist clutter occurs at about
iP = 3§§k0 40. 744kol As a further illustration, g(n) is
gplotted for the special case in which there 1is only one
:range sample, 1i.e. K =1, In this case the PSF fcr the
‘continuous pupil becomes Jo(znkon). This 1is shown in
:Fig. 4.1.3a. Again notice that the first clutter appearsi
at around P = 40.744k;l . This further supports the

conjecture that it is caused by azimuth (angle)

n
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Figure 4.1.1, PSF
(K is the
N is the
(a) K=40,
(b) K=40,
(c) K=20,

of discrete pupil of the imaging system.

number of radial samples;
number of angular samples,)
N=256

N=512

N=512
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Figure 4.1.3. PSF for the discrete pupil N=256, K=i.
(a) The PSF. (b) The isolated first and second
order clutter term computed from taking the
difference of two PSF's.
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;undersampling. In Fig. 4.1.3b the 1lst and 2nd clutter are

_obtained as before by taking the difference of two PSF's,

4
First clutter el(n) = g(n) ~-g{(n) (4.1.5)
|N=256 |N=512
B |
: Second clutter ez(n) = g(n) -g{n) (4.1.6)
i |N=512 |N=1024
'Again one sees that the clutter terms are some well
o behaved functions. These clues provide us with some
interesting guides intosolving the problem analytically.
N 4.2 Sampling Requirements

|

!

We have found some clues in the previous section on
|
“the effect of undersampling in both azimuth and range

LY

dimensions of the PSF. One obvious conclusion from thege
|

;is that the sampling rates are extremely important
iparameters for the design of a radar imaging system. Lere
‘we  will try to solve the problem of defining what is
" considered sufficient sampling and what are the barest
‘necessary sampling rates so that the data can still be
rused to reconstruct the target. <The importance of this
problem is  also wunderscored by the fact that the
jnaxrowband assumpticn can be relaxed into a full disc
plane and thereby give a concrete undetstanding to the

'polar coordinate sampling requirements in tomographic

. systems,
i

|

' 717

<.

e




—— ————— P T e e T T TR,

[
i The key idea here is to 1-D Fourier transform the

I
idata 1into range profiles which is also called projection

|

‘data, and then carry out analysis in that domain. Another

“important concept that will be utilized here 1is the
|

fdegrees of freedom (DOF) concept [(15].

(&) Range Sampling - Number of Frequency Steps (K)

Since the DFT in the radial frequency dimension is

carried out to convert the data into range profiles {in so
}
'called “projection space"), the DFT property gives the

unambiguous range

| 1 _ K

!i Z.—E E‘g for K>1.
I

;For sufficient sampling in radial (range) dimension, the

T

- ‘following criterion must be met,
f |

‘Criterion 1: The projection data must unambiguously cover

‘the whole target of moximum extent 2a, i.e.,

\ §~ > 2a.
| | s :

‘Hence

K > 2ak

: B
(B) Azimuth Sampling - Aspect Angle Sample (N)

i

!

I
B

_ Depending on which aspect of the imaging system we
!are emphasizing on, the sampling rate in this dimension is
icalled different names. For example, the azimuth sampling
érate is represented by the burst rate when the transmitted

;signal format is emphasized.

|
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i In section 3.5, it was shown that the maximum Doppler |
. _bandwidth
k. = L. }d¢ l - 49 = 2k
| dB ~ 2ma | d8 [max d6|min 0’
|
|
The maximum change in phase from one range profile to the
| ' lnext range profile (or called signature) is then
i dé
' i — -
i . lAd’max!‘ ;’ d@!maer Zﬂakoée. (4.2.1)
o iFo: sufficient sanpling in the angular (azimuth) dimension
the following criterion must be met.
i
i
s Criterion 2: The maximum phase change between two
consecutive range profiles (signatures) must be less than
!
: us i.e.'
}
, | IAemax < .
:Bence
| 46 ¢ et = ot
% & Zﬂako 2ak0
3 :Since
: N = 21/A6,
’ _
‘ N 2 éwako.
{
! ;Therefoxe
2
| K 3 2aky (4.2.2)
’f N2 aina!so
IR B These are called the sufficient conditions that must be
. satisfied so that the target can be resolved to the best
resolution achievable with the system without being
: !
= * {
| 79
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!plagued by undersampling effects. They also give
|

parameters with which preprocessors can be designed to
|

. bring down oversampled rates.

Necegsary Condition

Very often, because of practical limitations,
 sufficiert sampling conditions in Eq. (4.2.2) cannot be
zet. In those cases the question that one needs to ask is
- what the necassary sampling rate should be if

reconstruction is possible at all,

In general, the maximum unambiguous range is given by

K

2Dmax = ﬁg ' (4.2.3)

'Again in general, from fg. (3.5.2), it can be derived that

C‘\@,, . =3
i a = 2ﬂak051nu.

With A0= 2myN,

a A, ) an

]s |agls 2rak sind. 5o .

Using criterion 2 for |48|s w,

; Qﬂﬂk081n9; .

’é

_Hence

| RV

! @ ¢ sin” (-4-%}-5) (4.2.4)
i

Let

AW At s a4 Rt wmAn iy A ot - —_

e spwar s mto




Bt
i

.=l N
emé\x = sin (477{:1}(0) i (4.2.5)

then the above inequality from criterion 2 becomes

1 e < e . (4.2.6)
, = max )

‘Therefore suppose that range sampling is sufficient, then

0

'as long as we do not process the echo signal of a point
|
!target(;(p0,¢o) for more than 2g, .. across the zero
|
.Doppler aspect angle, the targ2t recunstruction can be
fachieved without azimuth undersampling effects. The zero

'Doppler condition ozIre when the aspact angled =¢()and

!6 =¢O +M, Moreover e : ) aspect angle extent for
;unambiguous Dar phase 7 dipax in order to
unambiguously r ~truct the targer  <e use the following
lcziterion wh' re alse 1llustratec :r ¥ig, 4.2.1.

Criterion * ~ne  cooto. of intsacwtion k= acos® for
jevery R L T L -1 5 v.,as through the region of

Toveriay Tsanti il By russe two conditions:
| L <o

! = “max
6 <80
=<4

max.
These criteria car &lso be rewritten as

Z 6
max Az (4.2.7)

' vhere
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{ = a cos(9-¢,)

Figure 4.2.1. £ = a cos{6 - ¢ _) is the contour of the signal
from a point target o(a.éo) projected onto the
line-of-sight as it rotates.
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T3e:

il

cos'l(K/Zaké).

2 2
N K
(4ﬂak0) ( ZaRB)

"which is the necessary condition
Table 4.2.1 Summary of Sampling Requirements in Polar

"On simplification

l

|
|

i Coordinates :
|
NZCESSARY CONDITION u 2+(-|'—:—)2 > 1
S S
> = f
SUFFICIENT CONDITION NZN, = dmakg
K=z Ks = zakB

i
|
|
|
|

;The necessary and sufficient conditions can easily be
%visualized if we plot the constraints in two dimensions,
%This is illustrated in Pig. 4.2.2. Note that Eq. (4.2.8)
!is in general an ellipse with major (minor) axis Ng or Kg.

"4.3 sampling Requirements From the DOF Point of View

" (A) Range Sampling

The DOF concept in one dimension is given by the
" “time bandwidth product.” Hence, for a target of maximum

‘extent 2a and bandwidth kB for the transmitted signal,
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Figure 4.2.2.

K [Oversampled]
Target can be resolved
with maximum (best)
resolution possible.
(Ns'Ks)
_____ _—————_--—-—-—————‘
s :
|
! Target can be partially
! resolved by coherent
! processing.
1
1
‘
|
(Undersampled] '
Target cannot be !
resolved at all by !
coherent processing. \~r—
—_— |
iy 2 2
RERE (g—) = 1
b \'s s
1
!
1
1
]
(
1
4 N
1 N

Regions of (N,K) which illustrate the
sampling requirements.

N, K are

integers greater tham 0.
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the "time bandwidth product”

(maximum spatial extent) (signal bandwidth)

TBWP
2ak

B

=KS'

‘Since the TBWP represents the maximum number of samples of

I

,data that needs to be processed to give one reconstruction

|

:sample point, it also represents a sufficient sampling
|
|

condition. Moreover, this number is identical to the

;range sampling requirement found from a slightly different
|
’point of view.

(B) Azimuth Sampling
r

l

‘product of the target area with the Fourier domain pupil

"area. This number (an integer) represents the total

The degrees~of-freedom (DOF) is defined as [15] the

~number of linearly independent samples that can pass
i

through the imaging system and therefore only DOF numbet
:of samples need be collected to sufficiently reconstruct

'the target. FPor the annula ring pupil,

Target area = ﬂaz

Pupil area = 2nk k .
P 0" B

“Then the DOF of imaging system = (naz)(anokB )
| = 2n2(akg) (aky )
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The azimuth sampling requirement is

N = DOF _ 27" (aky) (aky)
TBWP 2 (akgy}
= 2ak B
. Therefore - Ta%
K = 2akg
9 (4.3.1)
N=mn ako

' for sufficient sampling, Note that with the Doppler

|
. bandwidth approach, the sampling criterion was

NK 3 87(ak,) (aky) (4.3.2)

and with the DOF apprcach it was

NK 3 2né(ak) (aky) (4.3.3)

;which are very close in comparison. They are off only by

:a factor of 4:5.

- 4.4 Conclusion

|
!

|
idiscretely sampled data in the annula ring pupil function

It was shown that the PS8&F corresponding to the

:is different from the ideal P :.-responding to the

- continuously sampled data in the same pupil function., The
i
difference lies 1in the presence of more or lese

:pe:iodically recurring so called clutters along the radial

l
dimension orf the discrete PSF. The seemingly additive

{
|
|
|
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|
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|
i
|

nature of these clutter functions may provide some clues

to their analytic structure.

Next, it was also shown that by using criteria 1 and

"2, the sufficient sampling requirement was

1

K=K_, = ZakB

S
N = NS = 4ﬂak0.
'From criterion 3, th necessary sampling requirement was
gi 2 4 éi 22 1,
S s/~

'These sampling conditions were similar to those derived

'
¥

i

from the Degrees of Freedom concept which is a completely

different approach.
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Chapter 5

ERRORS IN POLAR COORDINATE SAMPLING

! In many of the new imaging systems that are arising,
|
gmore and more of these seem to collect their data samples

]
iwith a polar coordinate format, Most of these systems

finvolve obtaining projections of the object and
|

ireconstructing the image from these projections. Since

;only a finite number of projections can be taken and only

'a finite number of samples can be read from each
i

projection, the polar coordinate sampling format is “built
" into" the system. Systems that wuse polar coordinate

2sampling include radio astronomy, electron microscopy,

X-ray tomography, rotationally symmetrical array design,

foptical imaging, radar imaging and so on.
{

i The first  attenmpt to estimate the sanpling
%requirements in polar coordinates appeared in 1967 [5] in
"which the maximum linear distance between any two adjacent
:samples in the Fourier transform domain was chosen so that
iits inverse was greater than the maximum diameter of the
jobject. This intuitively obtained result was also

;discovered in section 4.1. Smith et al. [33] in 1973
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computed the Fourier transform of a 2-D Gaussian function

sampled in polar coordinates. It was found that besides
. another Gaussian function that was obtained after the
. Fourier transformation, a series of clutter terms

associated with the function also appeared.

The objective of this chapter 1is to obtain an
analytic expression for the errors or clutters associated
‘with sampling in polar coordinate format and therefore try

to determine exactly the necessary and sufficient sampling

rate in both azimuth and radial dimensions. Qur approach
lis as follows. We will sample a disc and an annula ring
pupil in polar coordinates and compute their Fourier
-transforms which will be called “"discrete® point spread
-functions. Since these functions are isotropic, we will
;mention the transformation as Fourier  Bessel
transformation. We will apply Poisson's Summation Pormula
jto compute the discrete point spread function and get an
"expression for the difference betwesn the discrete
-transform and continuous transform. Thisg difference is

" the error associated with the sampling.

‘ One very significant immediate application of the
;tesult is on the estimation of the azimuth and radial
~sampling intervals for X-ray tomographic systeams. For

~many practical systems, experimentation was the method

|
]
I
{

. B | ssj
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iused to find an “optimum® number of azimuth samples or

Iprojections. Since each projection exposes the patient
i
'with an extra dose of radiation it is extremely important
!
ito know the minimum number of projections that is needed

:to get a reconstruction that is free of sampling errots.

5.1 Poisson's Summation Formula
"1, Fourier's Theorem
‘ Let g(x) be a periodic function with period &, with

|

at most only a finite number of siuple discontinuities

~(finite steps). Then for any €>0,

| - - 321 nx
: pim _ g(x+e)+g(x-€) _ :E:g o U8
| e+0 2 n
; N
~where . .
;w 1 8 J%ﬁ nx
! 9, ° % gi{x)e dx.
| 0
This is Pourier's Theorenm.
l N N am
2. Now consider the integral f(x)e dx  yhete £(x)
-also has only a finite number of simple discontinuities.
NA j%znx A 20 Na j%ﬂnx
./}(x)e dx= j +1 +, . S £(x)e ” dax
) 0 A (N-1)
N-1p(m+l)d J%Enx
= f(x)e dax
m=1"mi
N-1 B j%—'ln(tmm
= f{t+md)e dt
: m=0 0
‘Then




5oL et Y L
.v'f’.’: a e e

P

Y

o

5

; Na J %E X N-1 b J%Ent
flx)e dx = ji: fm(t)e at

whese £ (t) = £(ma+t) ., Frem Fourler s Theorem,

£ (t+e)+f_(t-€) ./-31 nt s

gim 2 o = f ©re B
e 2 A

; n=-e

i

‘At t = 0, the left hand.side is

|

‘ . f {+€)+f ("E) *+

: fim m m I P ,

% ced 3 = 2,(L(mé) f(m+v1)A}}

i

;and the right hand side is

f 1 =t J%* nk

t > < S o 4

| A :E: Falkle dé.

( n=-wd )

!The:efote © 2n .

i 1 ‘ 1 Zr: B e

| E(fm+fm+1} T s *m{’}e d

} nsaum}s

né

(5.1.1)

-where fm represants fmiﬁ). Sumaming up both sides over all

’.m'

m=0

N=1 Tk
PI{EAT NI J ft:e a
‘ m&ﬂ ns -

oa 4 -]

P e ety ety

5 dat
n=-xf g
Substituting 8g. (5.1.1) ints the term in
brackets,
) s Ry, 27
2 = + = E ®
2[ " fw+11 3 aj £{x)e dx ,

: =0 a=-ov{
i
i
1

" -~
: N 11N
LY jf&cg)e NN B
g “g

sguate

9
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On 51mpliflcation,

i N-1 A 0

Y i e X

| | fm =3 f(x)dx + e [f0 NI (5.1.2)
i m=0 0 n=l

iwhere 2 NA . :

% en =y g f(x)cos(zw nx)dx .

' 0

This is the Poisson's Summation gﬁfmula {5}]. It says that
iif we approximate an integral s f(x)dx with a linear sum
:of samples, the werror incurred will be a (pountény}
iinfinite sum of errof terms, the nth order of which being
 ¥pe The residual errof term %TQJ—fd only depends on the
:end poeints of the  function and 1is wusually not

consequential,

5.2 Angular Ssupling

4

Lonsidetr the giscrets Fouriet Bessel tranusform of a

unit cirgel

[¢3

discretely sampled in azimuth as in Fig. 5.2.1.

Jenpcosd
£{8} = @

re
G
4
&
[

G2n, 1%0,1,2,...,8-1

\Let,ﬁ'be an even integer., Since £5 = fy, the residual
ter® is

e

X
5 0.

PRIy (5.2.1)

Using Poisson's Summstion Formula in Eq. (5.1.2), the

vs s o e

discrete F,7T.

PPy R
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Figure 5.2,1.

Angular sampling on a unit cirnle.
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1 N3 j2npcos(%ﬁi) 1 2T iompcosd - 1
ﬁZe = 57 e dEH}-J;r-
i=0 4] n=1 0 (5.2.2)
I3 a)'
.eJZWQCOSGCOS(Xine)de
oy
= J0(2ﬂp)+2_‘en(p)
: where =1
27
e, (p)= %S e72mPCOS8 s (nNg) ao - (5.2.3)
0
From standard integral tables [1],
- 7.(nNﬂ
1 J2npcosd . _ 2

? Fj e cos (nko)do= JnN(Zﬂp)e .
{ 0
‘Because - .. even say N = 2N',
5 27 : gaﬂl
f % § ernpcosecos(nNe)dG = JnN(Zﬂp)e 2 .
'Hence
‘ \ nN'
| e (p} = 2(-1) Iy (2Tl . (5.2.4)
|

‘Note that if 4lN, (-1)™ is always positive and €, (p)

.will always be positive. Finally substituting Eg. (5.2.3)

|
iinto Eq. (5.2.2), the discrete Fourietr Bessel transform of

‘a unit circle is

)
i
l

N-1

0 n=l

[N
il

2n o
j2npcualg— 1) 7t
% e N ey (2m0) 42 E (-1)"W';

an (2N o )

o sy e i et A

24
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&

if we call the left-hand side the Discrete Fourier Bessel

|

. right-hand side is the continuous Fourier Bessel transform

transform of a circular ring, then the first term on the

"term while the terms JnN(ZHp) in the summation represents
|

1
"the nth order error due to the discrete approximation,

Properties of J,y(2mp)

Since discrete sampling is meaningful only when N is

I

“a large integer, we need only to study the properties of
?JnN(an) for large orders nN [39].
|

, From the properties of Bessel functions of the first
I
‘kind and large orders, Jpy(2) is negligibly small compared
f

“to its first peak €or 0 S z S nN. The value of the first

R
, peak is also the most dominant one. Besides, over that

" interval JnN(z) is a monotonically non-negative increasing

i
¥

. function, We will therefore only be interested in knowing

i
‘where the first peak occurs and how significant {t is
|

;compared to the maximum value of J,(27mp) =1 at p = 0,
i

This will give us a.concrete method to choose N (or the
I
:angula: sampling interval %ﬁ ) depending on exactly how

i
large an error one ce&n tolerate on the discrete

approximation.
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r .
i Referring to G.N. Watson [39], the first peak of
l

Jnn(27p) for large N occurs at

0.8086NL/3

27

j p=P_ = (%E)n+( )n1/3+0(nN)-l/3) (5.2.6)

where 0(°) represents the order of the series truncation

‘error. For large n, P, is approximately linearly

l
-proportional to n which means that the nth order error

shows up at pAnP where P = N/27., The series of nth

i
iorder error will therefore appear like radially periodic
)
icl;;ters. In two dimensions, the errors appear as

circular artifacts of radius given by Pn for n = 1,2,3...

Table 5.2.1 shows values of P, computed foc various

|
!
§
I
!
t
i

(values of a for N = 256. A linear approximation using
i
.only the first cerm in kq. (3.2.6) 1is shown witk the
i
“resulting percentag2 error. Notice that even without the

‘1inear approximation, valizs of P, still show that F, is
?very closely ejual to aP but with P & 41,00 The radiaily
‘periodic phencmenon and the value ¢f the “period” P was
ialready observad in sect.iun 4.1, This observation will be

“brought up again when we consider the PSF of the
i

'narvowband pupil.

! The last column of Table 5.2.1 shows vilues of the
l
i

, first peak of the nth oraer error term ep(p) = JIpn(27p).

.

|
| !
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: _
|For N = 256, the first peak of the first order error

1JN(2ﬂp) is 0.211 (-6.76dB). This is a significant value

. compared to J,(0). If pp;is the smallest radius of the

|
ifirst order error term JN(Zﬂp) that can be tolerated and €

:is the largest error allowed within the region of

1

linterest, N must be chosen such that

1

min
As an illustration, Fig. 5.2.2a shows Jg(27p) which

;18 the exact Fourier Bessel transform of a circle of unit

'radius in Fig. 5.2.1,

' Figure 5.2.2b shows the discrete Fourier Bessel
;transform as given in Eq. (5.2.5) for P over [0, 200k;l)
!where ko = 1, Figure 5.2.2¢ shows the exact Fourier
!Bessel éransform and the independent error terms for

n=1,2,3,4.

t5,3 Radial sampling

'A. Qver Full Disc Pupil Function
i
]

Suppose we have a series of K impulsive concentric

circles shown in Fig. 5.3.la as pupil function. Let the
i

;pupil function be
{
' K-1

G(k) = Ak Z 6 (k~jak) (5.3.1)
j=0
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(a) The exact transform JO(Zﬂp) of a unit eircle.

Figure 5.2.2,

Fourier Bessel transform of a unit circle
and its angular sampling effects.
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- g(p) = J_(2mp) + Ze (0)
= n=1
P

l'dllﬂjl #U

Lanafye
Iurwv "F M M U”‘

A l‘l‘“{ }nﬂ“‘iu

A Gh—d L3 1 1 1 11

lﬁdhl
iy

-y

q

-.8 I Y NS W N N SN U U NS S N N N W NS T A
q 100 P=2200

(b) The Fourier Bessel transform g(p) of the unit circle
with angular sampling interval 2mw/256.

-8 o

(c) The exact transform Jo(2ﬂp) and the independent error
terms due to angular sampling.

Figure 5.2.2 continued 100
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X
2y
' (2K-1) radial samples
]
: @1 2 =2 K-1 - K

Rﬂdial S&mpliﬂg index j=0.1’2.ooo. K—Z. K‘l.

<A

Figure 5.3.1. Full disc pupil function, discrete
in radial dimension but continuous in
angular dimeansion,
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where Ak = kg /K-1. Since this is an isotropic function,

he point spread function is also an isotropic function

u

given by
g(p) = B{G(k)}
= ZHSkG(k)JO(Zwkp)dk
0
5.3.2)
ZnAk:E:jJO(K = ki) or (
N
K-1
27 .
Tak 2 BINNCR ) (5.3.3)
j=-K+1
Here, two forms of the point spread function have been

presented because depending on the application one or the

€

l
i
‘other will become more handy to use.

For our purpose, we will use Eq. (5.3.3). Applying

Poisson's Summation Formula from Section 5.1 in a slightly
!
modified version, it can readily be shown that the PSF of

|

the multi-circle pupil function is
k

B = (B
. glp)= "S [kIJO(prk)d)ﬁ-an “ llio(zﬂpk)cos(Zn}-filnk)dk
i B
“kg n=1 kg
(5.3.4)

+ anBJO(ZWRBp).
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The First Term

The first term on the right hand side of Eq. (5.3.4)
is the Fourier Bessel transform of a disc pupil of radius

l
kg and is given by

i kB

! Jl(ZHkBp)
: 4 (o]
e

|

The first term therefore represents the exact point spread

function of the continuous disc pupil.

The Third Term

The third term represents an additive factor which

modifies the main lobe of the exact point spread function

.0f the disc pupil.

|

The Second Term

% The second term on the right hand side of Eq. (5.3.4)

represents a serles of nth order “radial sampling clutter"

'(39]. It is

I
radial ©
sampling = :E: en(o) (5.3.6)
clutter n=1
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where

00

e (p)==2nj [1k|J,(2mpk) ] [rect (k/2k.)]cos (2n5tnk)ak (5.3.7)
i n 0 B kB

-0

is the nth order radial sampling clutter. Equation

(5.3.7) 1is a cosine transform and the convolution theoren

can be used to study the behavior of e{p) . Let

2]

! gn(p,x)=2ﬂ§ lkIJo(ank)cos(Zﬂxk)dk (5.3.8)

-

|
~and define a convolving function

-0

’ ®
! wy (x) ='y rect (k/2ky) cos (2nxk)dk. (5.3.9)
1

iLet us first find én(p,x). Equation (5.3.8) can be
. simplified as

l w

en(p,xf 5 4nskJo(2npk)cos(2nxk)dk. (5.3.10)
0

. From standard mathematical tables, [Abramowitz, Stegun]([1)

and a little manipulation, it can be shown that

@ u

-a cos(%u) 1 y
*I kJu(ak)cos(bk)dka u[ T 5 2]b>a>0
' 'gz_az[bw{;z_az] b°-a b*-a
0 0<b<a
(5.3.11)
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o

{
|
|
]
|

which is not defined for b = a, By substituting u =0,
!
:a = 2“9, b = ZTTX,

|

-3/2
_lf[xz—pzl x>p>0
&_(p,x) =4 °" (5.3.12)
10 p>x20 .
‘Next, wl(x) can be rewritten as
wl(x) = 2}CBSJ'.1'1C(2}<B;<).1
!By the convolution theoren
%
l 8 (p) = &, (pox)w wy(x) o DK=1) . (5.3.13)
| s
'Hence
i . ®
' . , n{Kk-1) _
Gn(o) = j én(n,x)wl( X x)dx
- O
| e - (5.3.14)
= B 1 sinc(2k (El§:£L -x))dxvp>90.
T 2 2 B k
2-p B
£
wl(ﬂiégl)-x)peaks at x= Eég:l)while @n(o.x) blows up at
%= p, Since p» is a moving parameter, we will expect
l Gn(p) to peakatornearpwn—'(%:-l-)at whiich point the areca of
i B
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:overlap is maximal. The convolution  process is
i

lillustrated in Fig. 5.3.2.

B. Over Annula Ring Pupil Function

Suppose the annula ring pupil is discretely sampled
. in the radial dimension as shown in Fig. 5.3.3. Since the

i
- derivation of én(p,x) is independent of the pupil

. function, &,(p,X) stays the same for the annula ring. But

| _
the convolving function is instead, the sum of the F.T.

%of two rectangular functions displaced by +k0. —ko, from ‘

i

the origin. It is

i

; k“ko k~k0
W,y (x) = a{rect(~gg~)+rect(—§gw)}

At e . (5.3.15)
= 2£Bs;nc(ksx)cos(2wk0x)

The nth oider clutter for the annula is therefore

z e (o) = wy(x)x & (P} . _ n(K-1)

i B

: " An interesting result from lookin1 at the radial
asampling affect on both the full disc pupil and- the annula
ring (bandpass) pupil is that in both cases the radial
_samgiing clutter becomes significant in the vicinity of
‘p o Ei%:il The mean fregquency of the uannula ring does not

. B
play a direct role in determining the position of the
K
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én(p,X)

pdirection of motion

of &,(p,x)

/w(“a
stationary

»

Figure 5.3.2., Convolution of ’e‘u(p.x) with w QM - x|,

~.
Al /\\#rzf\ /3 bx
V4

viJ\r
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Figure 5.3.3. An annula ring pupil function, discretely
. sampled in radial dimension, but continu.usly
; sampled in angular dimension. (K radial samples.)
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‘clutter, The minute details of the nth order «clutter in
|

"each case will differ since they are determined by their

' individual convolving function wj(x). The gross behavior

fof the radial sampling clutters is essentially the same
[

because they share the other common convolving function

& (e,x).
%
The above results are 1illustrated in PFig. 5.3.4.

t
|
:Figure 5.3.4a shows the difference between the exact

ﬁFourier Bessel transform and the discrete Fourier Bessel

‘transform of a circular disc pupil, with K = 20. Figure
"5.3.2b shows the lst order radial sampling clutter with a
{peak of 0.0875 at p = 19.27 34 K-1. Figure 5.3.5a shows
'the exact Fourier Bessel transform of an annula ring with
;ko = 10kp . Figure 5.3.5b shows the Fourier Bessel

;transform of the discrete annula pupil. Figure 5.3.5¢c is

. the ‘isolated 1st order radial sampling clutter e;(p) for
i

“the annula ring pupil. Figure 5.3.5d is a blown up view
fof the first order clutter which peaks with a value of

:0.023 at o= 19,03 ¥ K-1. Notice the similarities and

'difference in the 1st order clutters between the two

i

" systems., .
!

5.4 Simultaneous Radial and Angular Sampling

{
t

|
transforms of the angular sampled circle and continuous

In section 5.2 it was shown that the Fourier Bessel
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Figure 5.3.4, FPourier Bessel transform of a radially sampled
disc function and its sampling effect. (a)Transform

of the disc pupil function of radius k_, with K=20
and K=40, (Over the range of P shown in the graph,
the curve for K=40 can be taken as the exact trans-
form.) (b)The first order radial sampling clutter
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Figure 5.3.5. TFourier Bessel transform of a radially sampled

annula ring pupil function (k = IOkB). (a)With K=35,
over the range of ¢ shown on the graph, it closely
approximates the transform of the continuously
sampled pupil function. (b)With K=20, the first
order clutter occurs at approximately P =K-1 = 19,
(c), (d) Finer details of the first order clutter.
(Note the difference between elkﬁ here and

the el(p) in Fig. 5.3.4b.)
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‘circle were related by the following equatien,

|

A
!

N ,
3 1 Nl jZWpcos(éli) gn
; q e = JO(an)+ j{:(—l) JnN(zvp),
i i=0 n=1
| et Sk A= J2mkocos (24)
' G(k) = _LZ e .
N :
i=0

: Then . Nn

G(k)2ﬂkJ0(2ﬂpk)+2ﬂk 2{:(—1)2 JnN(Zﬂpk) (5.4.1)

n=1

land the PSF corresponding to the both radially and
i
angularly sampled discrete pupil as shown in Fig. 5.4.1 is

} k K_l
= B

| =0

|

;where kj = kmin+jAk, Ak = kB/(K-l). kmin = 0 for full the

;disc pupil, and kp;, > 0 for the annula ring pupil. G(k)
|

' can be split up into two terms. In particular

G(k) = Gl(k) + Gz(k)
" where Gl(k) A anJo(Zﬂpk)
and
© gn
Gz(k) A 2tk }E: (-1) JnN(ank). (5.4.3)
n=1

:Gz(k) is the clutter due to angular sampling called
{

’angular clutter,
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Figure 5.4.1. Polar format sampling in both radial
and angular dimensions.
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'A. Full Disc Pupil

Koin = 0, Kk = kg - The continuous system will

. give a PSF k

B
gc(p) = S G(k)dk.

0
lHoweVer, with discrete radial sampling, only the discrete
l .

'PSF is available which is given by

K-l
B
g(p) = g 2{: G (xy)
j=0
K, K-1 - K-1
= &1 }E: Gy k) g2y :E: Gy (ky)
3=0 =0
\ (5.4.4)
'Using Poisson's Summation Formula on G,(k),
i B - 2%
) :E: Gy (ky) J. Gy (k) dk+ 2 j{: J' G, (k) cos (Frm k) dk
| 30 0 m =1 "0
K (5.4.5)

B
- 7(x=1y %1 (kp)

‘The first term on the right side of Eq. (5.4.5) is
' k
B B
J Gl(k)dk = 27 kJo(ank)dk
0 0
Jq (27 kgp) (5.4.6)

:kB 5

~which is the exact PSF desired.

The second term on the right hand side of Eq. (5.4.5) is
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o

k
;Zeml(o) = 22 S G (k)cos(Ak m, k) dk (5.4.7)
m; =1

ml=l
where upon simplification,

B
eml(p) = 4n§ kJ (27rpk)cos(Ak lk)dk
0

From Egs. (5.3.7), (5.3.9), and (5.3.10), one can identify
th
(D) as the m; order error corresponding to the error

i
assoc1ated with radial sampling alone, as in Eq. (5.3.7).

{This term is therefore the clutter of the discrete system
l
~due solely to radial sampling alone. We will <call this

|
i
1
I

. the "system radial sampling clutter.”

'The third term on the right hand side of Eq. (5.4.5) is

k, nkg
- 37x=T) Gptkp) = - gIT Jo(2Tkge)

,which is the residual error term. This term does not
- introduce any clutter, It only modifies the exact PSF of

t

: the system,

Next, using Poisson's Summation Formula again on

G5(k)

L kel

B

K~1 }E: Gp (ky)

i=0 i} (5.4.8)
; kg
| o= G, (k)dk + 2 IE: G (k)cos(Ak zk)dk .
0
=0

ma
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. In the same manner as with the function G;(k), the terms

on the right hand side of Eq. (5.4.8) will be studied

individually,

—— t——————

1st Term on the Right Hand Side of Eguation (5.4.8)

¥ Since Gz(k) is a linear sum of nth order anqular
|

clutter terms, the first term on the right hand side of

Eq. (5.4.8) is the clutter of the system, due purely to

‘discrete angular sampling alone; this is called the "sys-

o

‘tem angular sampling clutter,* and is equal to

k
o

B
E\n(o) = j 6, (k)dk (5.4.9)
n=1 0

€

where

k
SN

B

2

A o) = (-1)° J kI (21pk)dk. (5.4.10)
0

1 The nth order angular clutter term An(p) is insignificant

ifor small p(|p] < l/kB ) because the linear summation
i

; §should approximate the continuous integral well for small
%c gp. We know that JnN(Zu>k) is negligibly small for p 2 0
% ;until 2npk ¥ nN, i.e. when k2 gga . However, for o
E small enough, 5%% may lie beyond the upper limit ky of
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jthe integral in Eq. (5.4.10), in which case A (o) a 0.
.This situation is depicted 1in the Fig. 5.4.2, Hence,

t
A (p) is not significant until approximately

|

nN
{ B
!

“and the first significant angular clutter will appear at

“py N . A (p) peaks at the 1lst zero of J ,(2mpk). If
T kB n n

‘we insist on obtaining an expression for A, (p) by carrying

out the integration in Eq. (5.4.10), it can be shown that

N'.,1 (nN+1+2it')
A (p) = (-1)™ (znN) 0J » (271k0)
n 2 E (AN'+1+i') (N'+1') nN+1+21 kB

l i'=0
'by using standard integral tables. This resulting
expression also predicts the same behavior of A,(p) as in

'expression (5.4.10).
|
!

2nd Term on the Right Hand Side of Equation (5.4.8)

i
I
! The second term of Eq. (5.4.8) is the clutter due to
|

:radial and angular sampling simultaneously. It is

L]

!
| o
l S 2 en™e (o (5.4.12)

‘ m2=l n=1 2
|
!

‘whare

k

B
Cnm2(0)=2§ kJnN(2npk)cos(Zv(K-l)mzk/kB) dk. (5.4.13)
0
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Figure 5.4.2. Integration process for the system angular
= sampling clutter A (p). (Over the integration
interval [0,k.]., kI (2mpk) has very
li;tleusigxzif’ cance until approximately
pd 9}-— The first peak of An(p) occurs at
; the Pzero of the intogrand kJ nN(Zﬂpk).
) i.e. when 1 1
* { o -
l 2upky = ol + 1.86(aN)> + 1.03(aN) 3 + ....
‘ : Therefore A (p) becomes most significant when
". ; p & Py - nﬁ/Z!kB.)
P e
*:~
o

[ i
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‘n corresponds to the nth order clutter due to angular
3sampling, m, corresponds mzth order clutter due to radial
jsampling. If we follow the same line of development as it
.was done in section 5.3, Cnm (p) can be rewritten as

B 2
C . (p) = j llinN(ank)cos(2nKm2k/kB) dk.

|
..kB

- Again Cnmz(o) is a convolution of two functions which are

! Cn(p,x)é‘{ k|3 _,, (27pk)cos (2nxk)dk (5.4.14)
! | o nN ‘'
!
l k
_and B
i w3(x) = cos (2rxk)ak
| ™
i ‘ (5.4.15)
| = 2kgsinc (2kyx)
!
~such that
i
‘ -~
? C_ o) = C_(p,X)e wqlx)
. ' 3 |
: 2 " m, (K-11 (5.4.16)
' e
( ' B
. From Eq. (5.3.11)
f
4 » 1 [% +nN] for x3p>0
(2nx) ML (209N (5.4.17)

g C (p,x)=

: 4 for 0<x<p
2 2

_where e= Yx =P,
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. Figure 5.4.3 shows a plot of Cp(p,x) for p =0.1, n=1
i

.and for N = 0,2,4,6,8,10 and 100. Values of larger values

{
1
- of N cannot be computed on the computer (DEC 10) without

“arithmetic overflow. But one can see that it does not

. take N to be too large before én(p,x) approaches to a
delta function. Since for most polar coordinate sampling,
N is in the order of at least 102, én(p,x) is essentially
a delta function given by

Cnlpsx) ¢ A 8(p-x)

where A, is some appropriate magnitude. Hence

A

~ 3 +« 1D - e *
bnmz(p) v 4A_kpsine 2k (o " ) (5.4.18)

|
|

Now we can finally say this. By observing the limit
i of integration in Eq. (5.4.13), Cnm {p} cannot become
2

» significant until

' b = é% k;l for n=l.
By observing Eq. (5.4.18). Cnmz(p) cannot  becoma

significant until

-1 . "
o ¥ (K-l)kg tor my=l.

. Therefore, the simultaneous sampling cluuter C o flrst
an

. becomes significant at

-1

fThis means that by considering the system radial sampling
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i clutter of Eq. (5.4.7) and system angular sampling clutter

l
iof Eq. (5.4.10) independently, we will not have to worry

_about the simultaneous sampling clutter Cnm ; unless

! 2

5%; = K-1, When this happens the three component clutters
;will be  superimposed on top of each other around
."\JN _l - - —l * :

p= 3§ kB = (K l)kB and their sum will determine the
|

“clutter ievel.

!

| . . . .

I In short, the discrete sampling of a full disc pupil
ifunction in both the radial and angular dimensions gives a

'PSF which is a composit sum of 5 terms one of which being

gthe exact PSF of the continous pupil function. The 5
|

;terms can be listed as follows.

1, Exact PSF: J. (21k_p)
- e ki -
B P

2. System radial sampling clutter: :E: e (p)
m

m=1

where kg
— 2n
em(p) = 4ﬂ[ kJO(ank)cos(KE mk)dk.

0
. 3. System angular sampling clutter: :E:A (p)
n
n=1

k
- where Lon

i

B
i o] :
An(p) =(=1) S kJnN(znpk) dak,
0

14, Joint radial/angular sampling clutter:

ni'
(-1) Cam(p)

=1l n=1 123
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"

B
ZX kJnN(Zﬂpk)cos(Zﬂ(K~l)mk/kB)dk,
0 A

where Cnm(p)

fl

Cn(pIX)* wl (X) |X=m(K—l)/kB
Wl(x) = 2kBsin c(Zka)

A
Cn(p,X) is defined by Eq. (5.4.17). -
1

'——-
N"'zN. 2
nkB
5. Residual error term: - &x=1 Jo(2mkge).
B. Annula Ring Pupil
kmin 7 0, kmax - kmin+kB

Using the above constraints on k and starting from
Egs. (5.4.2) and (5.4.3), one can go through the same
derivations as in section 5.4A and obtain the following
five components of the Fourier Bessel transform of the

:discrete annula ring pupil.

:1., EXact Fourier Bessel transform component :

. J, (27k__ p) J,(21k . p)
kmax 1 max~ ' _ kmin 1 min
, P p

2. System radial sampling clutter (same as in section

21 o
mlﬂl
‘where
eml(p) = éml(p'X)* W, (x) my (K=1)
x | — e ———
kB
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R

1 ~3/2

—17 [x2-p%) x>p>0
2%
e,nl(plx) =
0 p>x20

wz(x) = 2klenc(ka)cos(2nk0x).

‘This component is plotted in Figs.5.3.5b and c.

pupil):
D e
n=1 1
: k_ +=zk
- where 0 2B
; An(p) - (-l)nN . kg (2mpk) dk.
| ko~ 3*p
.This component is considerably different from the full
I .
;disc case in section 5.4A. 1In particular, the integration
iinterval here is centered at kg, This is illustrated in
l
iFig. 5.4.4. Again  since kJnN(ank) first peaks at
5approximately
! niN
k = 77p
A,(p) does not become significant until
nN
kot 7 kg ¥ 2np °

!4, Joint radial and angular sampling clutter

Z Z( -1)"W'e am, (°)

m,=1 n=1
where 2

C (p) = c (p,x)* w,(x)
nm n o2 _
2 x = (K=1)m,
k
B
125

3. System angular sampling clutter (same as in disc




Integration) _
Interval kB >

Figure 5.4.4, Integration interval for the
annula ring case.
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) ‘-‘r‘%:,gt:‘ ;:wz';g}gy:‘;'.':g

W3r R

wz(x) = ZkBsinc(kBg)cos(ZHkox).

iAgain like in the case of the disc pupil, Cnmz(p) does not

. become significant until

0 5 VRN S R |
(Y Mln{zn_xo+ 5 kB) ¢ (K l)kB }.
l5. Residual error ternm
m 2 2
K-1 [kmax To 2k ax?) " ¥pin? 0 27k, 'np%

The most important contrast between the disc and

iannula ring case is on the angular sampling clutter term

Bn(p) and on the convolving functions wj(x) and wa(x) for

. the radial sampling clutter em'(p). For the disc case

i
A, (P) is insignificant until p&§~. -1 while for the annula

| L L

| B

?wl(x) for the disc pupil is 1/2k, "wide" but w,(x) for

|

i the annula ring pupil ig 1/kg "wide" and is modulated by

ring case A,(p) is insignificant until p= 5= (k0+

sinusoid of frequency koe Other than this, the two
;systems have essentially the same general features, For

convenience of reference, Table 5,4.1 shows the components

|

,of the Fourisr Besscl transform of the two discrete pupil

i functions,
;3.5 Conciusion

We have found exact analytic expressions for the

;artifacts that are generated by Fourier transforming a
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{polar coordinate sampled disc and annula ring pupil
l .
|

 functions. This Fourier transform is therefore the point

S

spread function of the corresponding imaging system which

|
?
i

icollects discrete samples of data in the Fourier transform
.domain. We have called these artifacts as clutters. The

'clutter terms can in general be put into three categories,

viz.

1. Radial sampling clutter
2. Angular sampling clutter

3. Simultaneous sampling clutter

!It turns out that the simultaneous sampling clutter does

'not become significant before either the radial sampl ing

s ~clutter or the angular sampling clutter does. A special

'case arises when

N = 2n(K-1) for disc pupil and

? N = 27r(K-l)(k0+-21-kB )/kB for annula ring pupil

.in which case all three components become significant
I
simultaneously and henceforth their summation (joint

clutter) must be considered, Otherwise, the radial and

%the angular sampling clutter <can be considered
I

L ‘independently.

I

Oy

R e A T T 5 P

Using the analytic expressions obtained for the

‘clutters one can choose N and/or K exactly, given the
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ilevel of clutter that can be tolerated and the maximum
. diameter of the spatial region of interest. It is also
|

found that both radial and angular sampling create

IX

iartifacts that are isotropic in nature.
|
i . Finally, it is expected that a sampling theorem can
:be arrived at for polar coordinate sampling by extending

:the analysis to general 2-dimensional objects. It is also
Enoted that if the first and the last radial sample is
'weighted by 0.5 in the (discrete) summations with 'respect
to index 3j, the residual sampling error term will

'disappear..
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Chapter 6

RECONSTRUCTION METHODS

In Chapter 2 it was shown that the signal data D(8,k)

-represented the two dimensional Fourier transform Z(6,k)

%of the target "reflectivity" function 0(¢&¢,n) if the target
ipoints were vizible over the complete set of aspect angles
:(i.e. no shadowing) and if o(&,n) was constant over the
:entire range of aspect angles of interest (i.e. no

"reflectivity" change.) Reflectivity change problem will
1 .
'be considered as perturbation from the ideal situation,

Eand will be considered later. Qur reconstruction
|
'algorithms will be based on the above assumptions and

!
iresult, Some more important assumptions are that the
|

“target rotation rate and the range of its center of
|

:rotation are known exactly, These may be unrealistic, but
)
,corrections can be made. Such corrections belong to the
!
‘realm of motion compensation, Also, the collected data is

narrowband in nature.
! Reconstruction algorithms based on the above

(assumptions have been proposed but none seem to make use

‘of the full potential resolution digitally,. The optical

i
]
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, implementation of the high resolution reconstruction

| problem was achieved by J.L. Walker [37] by recording the
|

|
|
idata on a film in what is called the polar format. Here
|

we are concerned with digital reconstruction and the

!
. problems associated with it.

The basic problem of reconstructing rotating targets
is that o¢f implementing the discrete version of the

 inverse transform relationship

2~ max . '
0(x,y) = g S ko(s,k)e"Jz"k(x°°se+Y5l“9’dkae.
0k

(6.0.1)
nin

| :
Here we have implicitly assumed that 360° of data were

favailable. The amount of data involved is usually so
Elarge that it poses a formidable computational and storage
sproblem. Moreover, in practice the data is discretely
Fsampled in azimuth and range, so that some form of

i

;interpolation will be needed somewhere in the
.reconstruction algorithm; for complex data, this becomes &

"difficult problem,

|

‘can be classified as coherent processing, incohetaic

|

‘processing, and mixed processing., The way these are

Radar reconstruction technigues for rotating tarcgeta

described here can be applied to both optical and digital

[

:processing, even though some aspects of the techniques may

|
|
|
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Pe
"be more difficult to implement optically than digitally.
|
’ 6.1 Coherent Processing
|
i Suppose we are given the target data D(6,k) for
¢ !aspect angles within the range [0 ;,/,0p,4] oOver the
| ;spatial frequency [kp; /Ky e
! The reconstruction algorithm that makes use of the
: !full Doppler frequency extent available in the data is
:called coherent processing. 1In effect, this means that
gthe target reflectivity function is computed by the
’ lapproximation
|
; max » max
| o(E,nhag S kD (0,k) e 92Tk (EcosBnsind) g g9 (6.1.1)
' | min “min
|Coherent processing amounts to implementing this equation
?in one form or anothar,
¥
For most angularly symmetrical targets, the Fourier
“transform relationship {s accurate enough to give good
t‘g freconstructions since there will be wminimal amount of
?shadowing and the target points will show the same
i Ereflectivity. J.L. Walker domonstrated this technique
% g ioptically for either a collection of small point targets
g §or a cylindrical object which is sngularly symmetrical on
? lthe plane of rotation, Fer more realistic targets,
E s
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%artifacts arising from shadowing ané changing reflectivity

+will become significant problems.

The coherent processing technique can be understood

 1f we implement Eq. (6.1.1) by integrating over frequency

|
|

‘k first (range compression), and then contour integrate

'with respect to azimuth angle 6 . This was suggested in
|

TChapter 3 as follows.
1

|
l 2%p
- 1 J2nke .
; Ipc (8. 2) S D(8,k-kyle®" " dk , (6.1.2)
1
| 7¥p
| max
e L =j21k Lg
i g(§,n)n kos Ipclfitqie 0"vde. (6.1.3)
i emin
?Since we integrate A, 1.) over
! %nd * B Leﬂ £cosB+4nsind |
(emin'emax] to

'get the Image, the exponential term 4in Eq. (6.1.3)
l
“represents coherent phase compensation on each range
f

‘comprQSSed data point gRC(G,ﬁo) and the entire integral
_ tepresents what is called azimuth compression.
"Egs. (6.1.2) and (6.1.3) together define the target

f:econstruction algorithm by coherent processing,

i
: The physical interpretation of range compression is

X

well understood ([Skolnik][32). From the signal processing

1point of view, consider a stationmary point target

oo
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;reflecting a continuous electromagnetic wave of effective
¢ ispatial frequency k(=2/)). At this freguency the phase of
;the return signal is
!
| ®(k) = 2mk2 (6.1.42)
¢ |
iwhere 2 is the distance along the Jline~of-sight of the
:point reflector from the antenna. The phase of the echo
g !is a linear function of k as depicted in Fig. 6.1.la If
gwe take k as a variable ard regard & .as the “freéuency"
;with respect to that variable, then Fourier transforming
¥ ?the echo signals will give wus a "sinc" function which
?peaks at a "frequency" equal to 2 ; the' point target
%distance 2 can now be estimatad. This process is called
3 irange compression and it is depicted in Fig. 6.1.1(b)
Ewhich shows the compressed data.
l The physical interpretation of azimuth compression as
‘ zrepxésented in Eq. (6.1.3) can also be understood by
%noting that after range compression, the azimuth phase
;( qe(8) and hence the Doppler is determined by the mean
¢ !fzequency ko and the distance 1y =¢. This azimuth phase
;is illustrated in Fig. 6.1.2.
% ¢(8) = 21rr0k0-21rk26 (6.1.4L)
? where
; . g = distance between radar antenna and target center
R 135
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point target echo
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Figure 6.1.1. Range compression for MFS radar,
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l_f 13
of rotation,

26 =fcosf+nsing .

!The first term in the phase is constant. The se¢ond term

'is 1linear in 29 but not linear in 6, so that the Fourier

transformation prescription will not apply. Instead,

using a matched filter matched in phase with e"j¢(e), one
gets - 8

-7 9 (08)

max
G(E,n)‘:g gRC(G,R,e)e de.

min

iBY substituting ¢(6) into the above equation, it will

ébecome Eg. (6.1.3) except for a complex constant factor
f .

1

The Doppler time frequency can be obtained from the

~equation

£f. = r:g..?__(_i_.
dt dt

d = wf
b = it 9(9) ¢(8) = wfy

:where

W= rate of rotation
d
fe = angular Doppler = IE ¢( 6) determined by koamithe

target coordinates.

,_éIn this form it becomes explicitly clear that the Doppler

¢

;and hence the imaging property come as a result of target

}totation.

L

138




W ! Equations (6.1.2) and (6.1.3) are difficult to
i
|

P ~implement digitally because of 'the large numbgr of

gcomputations they demand. Coherent processing can be

} ,

‘implemented by segmenting the fregquency plane into
I

» . rectangular (or square) blocks, applying the the FFT on

"each block and coherently superimposing each block image.

Because the data in the frequency plane are sampled in

? rpolar coordinates, interpolation will be required before
|

i the FFT can be applied. More importantly, most of the
iblocks will contain empty data. This unnecessarily
¥ _increases the memory and computational requirement. Also,
!because the data are collected in azimuth sequence (one

isignature at a time), memory addreseing will become very

bl

‘unwieldy., A different method of implementing coherent

fprocessing techniques can be developed.
|

i Suppose we partition the [endn'enﬂx] azimuth extent
of the data into Ng equal segments of azimuth width 6.
!

~a

fFor convenience let 0 . =0 and 6 _ =2v, Then each
'segment will be
! g = .2_‘{2
W NS

radians wide. How ew and hence NS are chosen will be
& lmentioned later, Let us define (as illustrated in

'Fig. 6.1.3a)

S N YT O

! | en = nl, = Azimuth angle center of the nth segment.
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Figure 6.1.3. Angular (azimuth) partitioning of the radar
data and the change in variables in coherent
processing and mixed processing methods.
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i
£
£ - - -
=6-0
1,
% 4 —{(9 k)lee[e - W’e + 76 1. ke[kmln max]}
: iThe target reflectivity function from Eq. (6.1.1) is
T ©
. ! s .
S 1 G (E,n)= f kD(e'k)eJZﬂk(icose+n31n6) 36dk
00
NS—l
- :z: J]‘ kD(6,k)eJ2nk(£cose+n51n9) 464k
.
n=0
°n 6.1,
N-1  (6.1.5)
o g:} _’;JD(G k)eJZHk(Ecose+nsm6) 40dk.
] . Substitute 6 = ng +a and make the following change of
!
lvarlables
kx = k~ko
5 ky = ako
/80 that o=k /k, and kodd = dky. Then
§ Dn(kx'ky) = D(6,k)
where for ponvenience we have interchanged the wvariables.
) IThen
R g(g,n) Yy E j!- D, (k 'K )exp{Jzﬂ(k0+kx]
t n=0 n
| " "
é& -[gcos(n9w+kx)+nsxn(new+20{l dkxdky (6.1.6)
4
? s n=0
: 141
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|
|

'where In(i,n) is the integral in .Eq. (6.1.6). By the

|

:rotation of aXes as in Fig. 6.1.3b.

X = Ecos(new)+nsin(n9w) 6.1.8)
y = -Esin(new)+ncos(n9w)
k k
j2ﬂ(ko+kx)[xcos(E%)+ysin(E§J
In(g,n)='[{nn(kx,ky)e d}cxdky .(6.1.9)
Sn

In(E:n) is the reconstruction from each segment, rotated

by new. Suppose Oy is sufficiently small so that one can

| make the approximations

|

5y 1 5y, 2
cos(ko) v 1- i(ko)

k k (6.1,10)
sin(=¥) ~» ()

ko' = Ky

jon the phase of the kernel in Eq. (6.1.9). Then

- j2ue
In(E,n)—_[f Dn(kx.ky)e dkxdk

Y
Sn
!where
yik o oxkl a2
¢ n Xk, + yk +xk,+ _.-_Xko - ﬂ% - ‘"‘“xzko . (6.1,11)

By keeping only the first three terms, one can further

?approximate In(E,n) by defining
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ey

el
.

s

( "”ﬂ - J2m (xk_+yk ) et oy ]
x 1y (6.1.12)
Yoem ) otk ke dk dk,
. .
n
: such that
janox
I (gm) v e T (g,m (6.1.13)

ffn(i,n) now represents the 2-D Fourler transform of the
i ‘
inth segment and then rotated through new by Eq. (6.1.8).

lHence

| Ng-b

| 21k (Ecosnd +nsin nb)

| otgm) gz e I (g, (6.1.14)
g n=0

‘Therefore, the target reconstruction algorithm involves

i
taking the 2-D Fourier transform of each of the N

isegments, rotating them by their corresponding mean angle

I

jnew, and then coherently summed according to Eg. (6.1.14).

It 1s not necessary co rotate the axes after T[Fourier

|
|
~transforming each segment. Tn(ﬁon) can be obtained by

|
ifirst rotating the axes in the frequency plane of each

‘segment and then carrying out the Fourier transform.

;However, because the phase of the target reflectivity

i

L o(E,n)  can change drastically from one range cell to

‘another, or from one cross-range cell to the next,
{

Erotation of axes 1is recommended only in the frequency

MY




) -
: plane where phase coherency is better preserved.

|
|
; This method of implementation allows the use of the
|

EFFT and at the same time uses the minimal amount of

memory.

Equation (6.1.14) can also have the following
;interpretation. It simply means splitting the integration
!interval of the contour integral Eq. (6.1.3) into N small
:segments, with each angular segment being so small that
Ethe curved contour in each segment can be approximated as

.a linear contour. At the same time, each segment is also

-small enough so that the contour within that segment does

i

not migrate in down range (x-dimension) for more than one
{

|

|
.error" and the latter limiting nriterion is described as

range c¢ell width, The former limiting criterion |is

described 1in practice as “"range dependent azimuth focus

"the *range-walking® error. Both of these are described

‘below,

Equation (6.1.14) was derived by making

:approximations in three different places:

|
% 1. no range curvature within target space,
% 2. narrowband assumption,

i

3., truncated Taylor's series expansion of

Eq. {6.1.10).
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~a

The 1last approximation poses the most serious

[T

,limitation. Two most significant aberrations are caused

?by neglecting the quadratic phases in Taylor's expansion.
|

. They are

¢l = 2nykykx/ko.

-which causes "range walking"* and

_ 2
¢2 = 21rxky/2k0

iwhxch causes what is called a ‘“"variable range rate" or
I"changlng Doppler" or "range dependent azimuth focus
|

‘error "
|

:Strip mode SAR and is dealt with in detail by Leith, and

O rThis is a classical problem in the processing of

'Brown. The quadratic phases ¢l and ¢2 can be dropped if
|
"they change less than w/2 over each processing aperture
!Sn' Therefore, for negligible “range walking",|A¢l|§ /2,
{

-and negligible ‘“variable range rate", [A¢2| V2, By
i
applying the substitutions

‘ IA}( l = -- wkot

mi L,

;*Note that ¢y = 2mx'k, where x' = yky, After range
compression, ghe range of a point wil¥ be shifted by x'
which is dependent upon the azimuth distance y.

L

! 1

Oote that 92 = -wk /AF where Fy % is the azimuth focal
.length. y changes thﬁ range x.




|
|

‘and |0x] = |Ay| = a, one can show that

2

0 aky (6.1.15)

!
i W
|

A

:for negligible range walking and

|

} ew < [ 2 (6.1,16)
} ako

ifor negligible variable azimuth defocus blur, In

gpractice, for example in Spotlight SAR, 8w is chesen such
i

that range migration is less than 0.3 range bin width to

|
~avoid image degradation (6]. As an example, let

; -1 _
lko = 200a , kg = 1l0a 1 in normalized units. Then
few £ 0.1 rad = 5,739 for negligible range walking,
|
t

f ¢

(1IN

W 0.1 rad = 5.73° for negligible variable azimuth

"defocus blur., For those particular values of ko,kB , both

!

limitations are the same. But for larger kg (say

%kB = 0.1&0), range walking becomes the limiting factor on
i

the segment width Gw and for smaller kﬁ ’
|

}azimuth defocus blur becomes the limiting factor on Oy
3
H

. processing  technique

the variable

The narrowband assumption is common to both the mixed

Y and the coherent processing

|

:FMixed processing technique is described in Section 6.3.

- > —— - - .
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=
. technique. It affects the coherent processing technique
|

;more significantly because the "bandwidth" (k
i
.determines the <~idelobe levels of the PSF, as was

!
i

e e o e et e = et o n s mamn e e eemamean o Rt

max Kmin

%discussed before.
|
]
!

Only the range curvature approximation is common to
.all three processing techniques. For airborne targets,
ithis approximation 1is accurate even when the best
‘resolution is achieved with the coherent processing

|

“technique. But for ground mapping purposes, like "in the
I

rcase of the Spotlight SAR, range curvature ultimately
-determines the best achievable resolution. Based on this,

‘the best possible resolution that is possible is given by

Var k.

070
‘where a = maximum radial extent of the target

|
' § = —ek 2 (6.1.17)

ry = antenna - center of rotation distance

B ! kg5 = wean spatial frequency F=%)
|
}

which was derived by J.L. Walker,

-

For example with ko= 2002™%, k= 10a”}, 0, £5.73°

for both negligible range walk and variable range rate

aberrations, The resolution of this system is limited to

‘approximately l/k09w==%aa.

Por the case when max 2n, 0 6, the point

min

L4

i
{
i
!
i
i
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"spread function for the coherent processing technique is
:the point spread function of the system. This was derived

.earlier as

Jl(znkmaxp) - X Jl(znkminp)
max 0 min o

|
i PSF(p) = k
|
|

‘6.2 Incoherent Processing
i

} In conventional tracking radar systems, the Doppler
!

'phase information 1is wusually lost at the output end.
t

|
without Doppler phase at all. In contrast to coherent

However, one might be able to reconstruct the target

processing, a reconstruction algorithm which does not make
use of the angle-to-angle Doppler phase variation cf the
echo is called incoherent processing, For this processing

‘method the magnitude of renge compressed data is assumed

ey

to be available. How the range compressed data |is

obtained does not matter at all,

: |
From section 6.1 the range compressed data (range

profile) is

| jznkoz )
pc(008) = kyl(g (0,2)e ) (sine(kyt))]  (6.2.1)

‘where gyl 6, ) is the true projection. Again we let

D{3,k) = 2-D Fourier Transform of o(f,n)
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.where 3., {+} represents a one dimensional Fourier
 transtormation. Suppose we approximate the projection of

l
' . the target on to the line-of-sight by ]ch(e,zﬂz, with

|
{ c(e,k)4 3,,0lga (8,0 1% . (6.2.2)
|

, BY the back projection theorem, G(6,k) is the spectrum of
!a hypothetical real object. The approximate magnitude of
'the target reflectivity function can therefore be obtained
Eby 2-D Fourier transforming G(9,k). The square of the
imagnitude of each range profile has been taken as
%representing the target's projection onto the
gline—of—sight because it is mathematically more tractable.
EIn the SAR signal processing sense it is called incoherent
;processing.

| Substituting Eq. (6.2.1) into Eq. (6.2.2) and using

|
IAppendix 6A

o0

. 7 G(e,k) =.[ (D(O,k -[u~k0j)D(U,-[u~ke])]

-0

-[rect(E%E)rect(ﬁl)] Jdu,
B B

v ‘Then one can write

G(8,k)= (D(e,k-{u~k0])D(O,-[u-kol) du (6.2.3)
J
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|
|

.where 0 = area of overlap between rect(%??) and
; B

i , >
rect{u/kg }. The area of overlap is zero when [k| = kg .

Hence G(6,k)=0 for |k]| which means that G(6,k) is a

z kg
bandlimited spectrum with maximum spatial frequency
component kg . The correlation process in Eq. (6.2.3) is

illustrated in Fig. 6.2.1.

The point spread function can be  derived Dby

substituting D(6,k) = 1 in Eq. (6.2.3).

i G(elk) = Jdu
| 0
Hence
i
| G( ,k) =A(£ﬁ . (6.2,6)
| i |
- where 1-|x| ~l<x<l
A{x) =
0 otherwise,

- The point spread fugction is therefore
! o 21

’ psp(p,¢)=j kA () ol 2TRPCOS(070) gy qq

i oo B

|

By carrying out the resulting Fourier Bessel (or Hankel)
transformation [Appendix 6B],

J, (@ukgp J, (‘nk p)
PSF(p,¢)= 5 ky ~Smme & - 2, 3“ (6.2.7)
p

| 3=l

[P ¥ g

where
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D{s,k)
i
|
|
{
1 e k
kO
+ k
D0, k-u-k,) Do, k)
I -k
..ko 0 ’
(a)
‘ G(O.k) G(a'k) is Hermitian
therefore
gzo(g(e,k)} is real
e k

y | kg

(b)

Figure 6.2.1. The correlation process of Eq. (6.2.3)

for the incoherent PSF.

(a) The correlation

process. (b) The resulting PSF of the
incoherent processing technique.
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3G+ D3+ DL
! (3+ 5) (3+ 2)(q 5)

*

. The values of the coefficients cj drop rapidly with j and

|
;@ good approximation of the point spread function can be

'made by using up to only 5 terms in the expansion. The

:following are the first five values of cj: 0.400,

10,095, 0.044, 0,026, 0.017.

|

; The PSF of a full disc pupil of radius kg is
Tk —

. B b *
:system had the true projection gr(e,z) of the target been

This would have been the PSF of the

:available. If it were available, the system becomes
identlcal to a parallel ray tomographic system., Since we
' 2

only have IgRC(G,R)l , the actual PSF will be different.

2, , .
Because (8,2)! is & real function, reconstruction

| 9pe
:algorithms for tomographic systems can be used to
:reconsttuct the target. The PSF of such a system is shown
. in Fig., 6.2.2 by plotting Eg. (6.2.7) and the
‘corresponding PSF of a full disc pupil function is also

plotted to show the difference.

The resolution of this incoherent  system is

essentially determined by 1/2kB which is much worse than
fthe resolution of 1/ky theoretically achievable with the

~coherent processing technique.

- e b e s e
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r

i6.3 Mixed Processing
!
!
|
l

If Eq. (6.1.14) is replaced by an incoherent
isummatiqg, we will have what we call "mixed processing" as

ifollows:
Ng-1 )
o(g,n) :E: 1T, 6m] . (6.3.1)

n=0

Therefore another way to reconstruct the target is to

partition the data into N segments again. Each segment
~can be processed coherently and the magnitude of the
‘results can be spatially rotated, interpolated, and summed
“up incoherently. Because of this the processing technique
{is called mixed processing., This method was used by Chen
“{11]. The width 6
|

.subject to the same inequality as for the coherent

of each segment of the data is

processing case namely Egs. (6.2.14) and (6.2.15).

|
E The point spread function of each image frame |is
'closely approximated by

} kaOkBSan(ka)sinc(Bwkoy)

fwhere 2 1s the down-range dimension (along the
zline-of-sight) and y 1is the cross-range dimension., The
ipoint spread function for the mixed processing technique
is therefore a superposition of the point spread functions

.0f the N image frames. The resulting point spread
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function is essentially given by
PSF (p) =9wkokBsinc(kmp)
where km = min(kB ,kao). The mixed processing technique
has a resolution not better than one can expect from each
segment reconstruction. But because of the shadowing
problem in real objects, the incoherent summation in
Eq. (6.3.1) serves to fill up the target space with points
'that cannot be seen from just one segment elone. Besides,

the signal - to -noise ratio also improves with the

summation. .

Figure 6.3.1 gives a plot of the point-spread
functions corresponding to the coherent processing
technique and the mixed processing technique. An Airy

'function' which corresvonds to a full disc pupil function
of radius kB is also plotted to serve as a contrast to
fthe incoherent processing point spread function.

i
6.4 Digital Implementation

Digital processing is in most ways more practical
:than optical processing. For a list of the pros and cons
isee [3],[37). Because it is now possible to make fast
fenough CCD correlators [2], real time digital processing
~becomes feasible. For this reason only digital

?implementation methods will be considered.
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Figure 6.3.]1, Plots of magnitudes of point spread
functiong related to thae three processing

i techniques. (B{circ(k/k,)} is plotted as

! a comparison to the incoherent processing

case.)
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i 1. Coherent Processing

o | A discrete version of Eq. (6.1.2) must be used for
|
;digital processing. Let range compressed data be

K-~

IK
S i 3 l 3
L ! ch(l:n) =X E D{i,ple (6.4.1)
p =0

=
I

=]

T

0,1,2'.-.'N—l

-
i

iwhere

i n
(i,n) (= 2w, )
7 n kB

| 9re ~Ire

B k).

' . i
,and Dli,p) = DT 2w, kpysp* g kg

‘To compute O(&,n) we use a discrete version of

Eq. (6.1.3):

N-1 :
e -~J2rk ., R

a in"i
G(E,n) WQE Feolile ™0 (6.4.2a)

i={

-

=

where

i

ERC(i) = interpolated value of gRC(0= % Zn,li)

-

3

i = cos(zg i) + nsin(gg i). (6.4.2b)

If the data is undersampled in azimuth, Eg. (6.4.2)

Lcan be modified so that for each point (£, n) being

e pome eps e e e oA

;considered only the range profiles 9 (1) that correspond

zto azimuth angles in (éint(%g will be integrated.




bpn = tan"t (+n/8)
ec = azimuth coherence interval
s sin“l(l/zaeako) (6.4.4)
where A8 = azimuth sampling interval = an .

i N

‘This way high Doppler regions are avoided. In this case

N...
_ k
D a(g,my EQZEf

i=0

27i

. L, CAE
Jpe MmN trect Tt | (6.4.5)

C

)If the range sampling rate is not sufficiently high, we

"can also use Eq. (6.4.5) but with
: -1, K
i Oc < cos (—-*“231(8).

The point spread function for this modified algorithm

had mnax
0-8 9=b. 41
PSF(p) & e k| rect (——&) +ract (—1 (6. 4.6)

T KGR 8 5.

-—)

min "
2rkpeos (6 ¢€“)

s @ d6dk

‘The constant 1/4ﬂckﬁkB has been chosen 80 that

"PSF(0) = 1. From Appendix 6C,

1 max »
PSF(p) = TN kJO(zﬂkD)dk

? o%s J.
‘ o Knin no ek
1 n_. ¢\ max
+ %Eg z :(-—l) smc(—n—-)sk kJ2n(2npk)dk
poy k
! n=1 min (6.4.7)

'The first integral in Eq. (6.4.7) is the original point

cpread function for the unmodified coherent processing
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, case, The integral in the weighted sum has the same form

" as the nth order azimuth sampling clutter Arﬁp) for N = 2,
|

1

’An(o) has a "main lobe" which peaks 1in the vicinity of
n

o =§§g;§ Therefore the weighted sum in Eq. (6.4.7) can be

Vinterpreted as the term that decreases the "sharpness" of

the original point spread function.
%
! Figure 6.4.1 shows the point spread functions for the
i

. coherent processing case with modified and unmodified

‘algorithms. A coherence interval of ® = 60° was

i C
~arbitrarily chosen to illustrate modified algorithm. FPor
.computation, a simpler form of Eq. (6.4.6) exists by using

the relationship in pp. 430 of [5].

The PSF can also be written in the form

} 0

} C

i c 0B 0

}

2 . . X -.2 N .
xo(e) = zlkmax31nc(2kmaxocose) kminsinc(zkminpcosel

22, 22 a2 _
-k sinc (kmaxpcose) kminSI"c {k pcosf}.

max min

Figure 6.4.2 shows the half-power (3dB) width pyup of the
lenvelope of the point spread functions as a function of
:the azimuth coherence interval Bc . Twice the value of ¢
?when the magnitude square is egual to 0.5 is taken to be
.the half power width cﬁﬂ,of the point spread function.
% . 159

- — e s b S aemie b e e e, e A e iy m T g b Y e e e (Al e
b ik v s e e e = e A st A b e -

S

|




— — — e

; | OREN NAE R B St M BN AUNE SENN SRNN NENE ERE BENS MR MR BNNN JNNN SENR BENN |
8 ' -
: 7 e e e e - |
b 60° COHERENCE INTERVAL - |
s e -
; 4 ja -
RS .
|| 2 hee -
‘ pre -y
0
3 | ] |
o E 4 |
7 L 180° comemence INTERVAL - ’
6 b ~
5 [~ b
‘ fon . -y
) "
™ -
N o -
0
T W W G U ¥ [ N W N |
i
‘ -
!
H
i Flgure 6.4.1., HMagnitude og point sBread functions with
) coheronce intervals 60 and 180 . These ate
ﬁ wormalized such that the total energy is unity.
l
4
i
{
!
i
t
| 160
—_— e e e e — et e y




P R

“a

e e bt e bt

A s — s s

Pyp Half power width (k;l)
S NS SN N SN NRE NUEE SRNNS SNANE Snn JNNEE SNMR SRAN SN ARANE SUNAS SENN ENEN | '
-l
-y
‘0.8 o
s -
pas. L
o -y
= 0.6 -
. -y
- -t
- *
R -
s i
o -y
- 4 |
_:0‘2 - i:
- o :
- i
! ‘l‘ | N S . 1 6? i 1 2 .!_t. | S I T itﬁ;ﬁ ] ,P ) %
1

————tam COHERERCE ANGLE ;
8 {OEGRIES) ]

Figure 6.4,2. Variation of 2y the half power {(3dB)
width of the point spread  function with
eoherence angle Gc.

e

lel

C e vt e e e o - B I R SV S UV VU

Rt s S R LT - . o PSR SRR Ul T T VPE CULy R TT




P e i R JUN ——— e e [y S

Pyp ig taken as a measure Mof resolution because of
convenience and because it gives a reasonably good
relative coiparison  of the resolution for wvarious
coherence angles €cr The resolJution stays about the same

for 8¢ <30° and 8¢ >100°. Therefore, in designing the

radar imaging system one may want to choose Bc to be not
more than 100° because beyond that the law of diminishing

returns takes over.

In choosing the actual computaticenal algorithm, the
batch~by-batch proacessing idea that led us to Eg. (6.1.14)
is most attractive in both speed and storage because of
the applicability of the FFT. Even in the case where the
data are undersampled in azimuth, this batch - by - batch
processing 1idea c¢an be applied to the wmodified coherent
processing technique by quantizing 8, 80 that 0 is equal
:to an integral rultiple of GW' Moreover, when speed is a
crucial factor, one can apply the VFT on the initial
‘segment of the data to obtain low resolution image frames
and make initial assessments. As the target rotates
'through wider angles, the subseguent image frames can be

rotated and coherently supervimposed on the initial image

frame to get better resolution. Because of the sequential

nature in which the lumps of data are being processed,

Ct emar o gemet s swmed

"lumped® pipeline architecture can potentially further
. i
speed up the processing time. Eqguation {6.),13) thorefore j

% ‘ ol

—ttas




repxesents a very practlcal algor thm.

Sirce we are interested more in the inigh resolution
i capability of the coherent processing technique, we will
;use the more easily implemented algorithm of range
comprescion and contour integration as represented in
"Eqs. (6.4.1) and (6.4.2), respectively. One can think of
the integration process of Eq. (6.4.2a) as spreading out
the image information in each range profile onto the
entire image. With the modified coherent processing case,
~an extra step is added. For a given range profile index
i, expression (6.4.8) is added onto the imagé point (&,n)

only if either

1
l%i ~tan™t (&/m) | < <78
or -
I%li ~tan l(&/n)~ﬂl§ %ec

i2° Incoherent Processing

_ Tomographic reconstruction scheﬁes can be exploited
?to reconstruct the target. Many different tomographic
!computer reconstruction algorithms exist and they can, in
‘general, be categorized into those which process in the
?spatiet domain (e.q. convolution-back-projection
Ealgorithm (5], [27}) and those which process in the
fFourier transform domain ((5}, [30]). For a review on

- these algorithms see [29],(18].
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i The sampl;ng reéﬁirement in aziﬁuth and ranée is much
fless severe than that for the coherent processing
;technique. If the data 1is oversampled in azimuth, a
%processor which acts like a"fast-in/slow-out" filter may

become necessary to azimuth-wise resample the data to the

proper sampling rate.
!

Fer the sole purpose of illustrating this processing
:tachnique and for the reason of availability, we will use

:the Shepp and Logan ({30] reconstruction algorithm to
[
incoherently reconstruct the target.

3. Mixed Processing

|
|
: Two-dimensional  FFT  techniques can be applied to

" each azimuth segment to get an image frame, Since only

the magnitude of the resulting image frames are used,
"standard interpolation schemes can be used to rotate the
'image frames, The digital inplementation of these

‘techniques is expounded in detail in [10].
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APPENDIX 6A

‘Statement JlD{Ix(t)*h(t)l2}=.[ [X(f-u)X(-u)] [H(f-u)H(~u)]du

-0

Proof Let y(t)

= x(t)*h(t)

: Y(£) = F (v (e))
| X(£) = 3, {x(t)}
H(E) = ¥ p(h(t)}

‘Then Y(f) = X(£)H(f)

5 Ux()*n(e) [2}= 3 (v (0)y ()
Y(£)*Y*(-f) {5a-1)

]

i

j Y (£f-u)¥Y(-u)du

|
Using Eq. (5A-1)

]

E [(X(£~u)X(~u) ] [H(£=-u)H(~u)du.

w00

This is a different version of the autocorrelation

gtheorem.

|
|
l
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APPENDIX 6B

K
1-|E~l %] 5 kg
Glo,k) = Alk/kg) =

0 otherwise.

i Suppose G(g,k) 1is a pupil function, Then the
icorresponding point spread function is given by the
EFourier transform of G(6,k). The Fourier transform of
iG(e,k) becomes a Fourier Bessel transform (also called
fﬂankel transform) when G(6,k) is independent of ¢ . The

point spread function is therefore

21rka(j}:—)J0(21rpk)dk
B

0

A(p)-B(p)

]

-

‘where k

B
A(p) = 2ﬂs kJ0(2npk)dk
0

JI(Z“RBD)
B »
k

and

B
B{p) = %ﬂ ‘ szo(Zﬂpk)dk.
B

'From Abramowitz and Stegun, pp. 480, Eq. (11.1.1),

2
2 2 2 - 5_
5 tIplelat = 3 270y (2) = 5 Z 725412

0
where
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(2nkp)dk
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| B
. B(p) ?‘f—-ng

2
o bvpkB )
! = S £ Jo(t)dt
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i
The point spread function is therefore
i

PSF(p) = A(p) = B(p)
[0
1 N Jl(anBp)+ 1 . . J2j+l(2ﬂkBp)
-3 7B 4 B EE: j

p Y

3=l

Each kth term in the series can be expanded in series form

(2]

-1, 213
23+l(2nk - )2j+1 23 (- 3 (ZﬂDkB) ]
| = B e nil(2)+2+n)

| p n=0

'which shows that it converges to Oasp> 0. Therefore we

ﬁo not have any singularity problem with the series,
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APPENDIX 6C

l The point spread function for the modified algorithm
|

in the coherent case of Chapter 6 section 4 is

. © ~ max e_¢gn e_¢€n+-n-
PSF(D)= m k[reCt (—6‘;—) + reCt (——6;—"‘"“)]
== K in (6c.1)
J2npkcos (6-¢. )
e &n w.:do

The constant 1/29c kBko has been chosen s0 that
|

PSF(0) = 1. At the same time it turns out from Parseval's

:Theorem that

g 2
! 2“5 |PSF{p)| pdp = 1.
! 0
:Let a =0 '¢£n' Using the Bessel function expansion
!

. formulae (9.1.44) and (9.1.45) of (1},

o0
! 2TkPOOSA, 5 (2mkp) 42 Z :(j)an(anp)COS(na)- (6c.2)
n=1
‘Also,
nec
- A ZSCsinc(i?—) n even
| [rect (&) +rect (%ﬂ-)] cosnada= (5¢.3)
' c c 0 n odd
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.

:with a change in variable from 6 to o , substituting

g |
ol . .Eq. (6c.2) into Eq. (6c.l) and using the result in

S |
‘e"'__: ' qu (6C'3)I

4 ! | max
' ! PSF (p) = _._s k3, (2mkp) dk
k

. o . RPTT
2w i o ka A

E - 3§ k (6c.4)
g - B @ né max

“ - 5-'“. 2 - n_. C

A + EEEE E (-1)"sinc (=) kd, (2mkp)dk
4 3 i n=t *nin

{j - f% IThe last 1integral has the same form as the angular

!
.sampling error terme derived in Chapter 5.

|
|
|
|
|
|
|

“n
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Chapter 7

SOME PRACTICAL CONSIDERATIONS AND EXPERIMENTAL RESULTS

7.1 RAT SCAT (RAdar Target SCATtering site) Data

Two sets of data were collected on an experimental

'RCS measuring facility called the RAT SCAT located near
|

Holloman AFB, New Mexico. A mcdel F102 plane was used as
}

‘the target and was mounted on top of a rotating turntable,
i
Because of the operational difficulty in maintaining a

coherent signal, a reference sphere located close to the

iline-of-sight between the turntable and the radar antenna

1

fwas used to generate the reference signal. The recording

i
h

'geometry is described in Fig. 7.1.1.

| The reference sphere § had a small diameter compared

t
'to the target size and therefore the echo from it could be
i

‘taken to be the reference signal., Since it is closer to

|
.the radar antenna, its echo will return earlier than that

‘from the target T. The reference echo was delayed by an

famount which was controlled manually with the aid of an

foscilloscope. Nominally, the delay should be eqguivalent
{
|
'to a round trip spatial distance of 2r;. 1In particular,

ithe reference echo was delayed long enough so that its

170
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of all this is that the estimation of the center of
rotation (CR) distance can be off by a constant distance
plus some incremental distance which is a random function
rof the azimuth angle. The rest is same as the imaging

|
| system described in Chapter 2.

Table 7.1.1 lists the imaging parameters for the F102
model plane. For convenience, the temporal frequencies
are listed in the right column as spatial frequencies
normalized against a = 10ft, (a = maximum radial extent
of the target) When the actual data was collected, the
‘center of rotation was centered at a point about 12f:,
from one end of the plane so that the center of rotation

is not at the target center.
The two sets of data are described as follows.

Set 41 = The model F1l02 plane is mounted right side up on
the supporting pillars above the turntable. The
data is collected over 180° azimuth éngle with O
degrees azimuth corresponding to the direction
when the plane is facing head on towards the

antenna,

Dot et e s e - e e e e e e e C et e e em e e

overlap with the target echo was maximal. The net effectl

|
|
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l Table 7.1.1 Parameters for Model Fl102-Plane Data

i ' Model: 0.29 x actual plane dimensions
Plane d}mension: 68 ft. (Nose-Tail), 38 ft. (Wing-Span)
Model dimension: 20 ft. (Nose-Tail), 11 ft. (Wing-Span)

: Actual Physical Data Normalized Data {(against a=10 ft)
E
] r = 1652 ft. r, = 165.2 (a)
a Ty = 1112 ft. ry = 111.2 (a)
! T, = 540 ft. r, = 54.0 (a)
| ~1
i = k. = .
; £oin 9.130 GHz Cip = 185947 (a~ %)
! * = 9.997 GHz kK = 203.36 @b
| nax nax
i £, = 9.5637 GHz kg = 194.478 (@™
' -1
i £ . = 0.83 GHz K = 17.719 (a™ )
i BiW B - N
\ Af = 3.4 MHz Ak = 6.92x10 (a 7)
| 6t = 0.2° 80 = 0.00349 radians
i
| K = 256 K = 256
! N = 1800 N = 1800
f

[ 3

Conversion factors

x2 x10£t
X thmporan k(spatial)~‘- >k(normalized)
! (sect) (££7%) (a”h
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t
.Set #2 = The same plane 1is mounted vertically (roll

angle = 900) and data was collected over 360°

azimuth angle,

!
i
i
|
!

Ff-‘ g For both sets of data, the nominal azimuth sampling

interval was 0.2°  Using Eq. {4.2.5) with a = 10ft the

A;f:; §~ icoherence interval is approximately g, = 47°, Therefore,
. the data are undersampled in azimuth. 1In data set §2. the
:sampling interval varies from 0.1° to 0.39, This
fcorresponds to at best a coherence interval of 29.4° which
lis even worse, In the radial dimension, the unambiguous
@~f 7 ?) range interval (radial extent) is

; 1

1 o |
| BE T 6.92x10 0 & 145 £t

)

MR which is more than 7 times larger than the target size,

‘Therefore, the data 1is oversampled in range. The range
bin width in each range profile is

ar = & v 0,56 ft,

"B

2,

7.2 Range Compression
:

The two sets of data described in secticn 7.1 are
recorded on a magnetic tape in blocks of 256 complex
numbers, each block representing the 256 freguency samples
for a given azimuth angle. Figure 7.2.1 shows the

magnitude and phase of data set 1 in the format that it

was tecorded. Because of the large dynamic range,
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log(l + magnitude) 1is displayed instead of magnitude
alone, so that some of the weaker signals become more
visible. The horizontal dimension represents the radial
frequency dimension from left to right ranging from
9.130GHz to 9.997GHz, 1in increments of 3,4MHz. The
vertical dimensjon rapresents the azimuth angle from top
to bottom, 8% to 180°. Each horizontal line of data will
be <called a signature. It is also referred to as an

azimuth sample in the literature.

Sne-dimensional FFT was applied on data set §l, one
signature at a time. The resulting projection space data
is shown in Fig. 7.2.2, fThe magnitude of each signatuyre
is now the range profile which shows the intensity of the
teflection coefficient in various range cells. Here again
due to the large dynami: range, the log magnitude of each
range prefile is displayed in Fig., 7.2.2a. rPigure 7.2.2b
shows the «composite Doppler phase of all the point

scatterers of the target.

_ The strong signal along the center of the range
Aprofiles is the d.c. bias magnitude from the FFT. The
strong signals to the right that look like <cosine - shaped
contours crossing at 90° azimuth are the range compressed
signature of the target. The related mirror image on the

left was found by Chen {10] to be caused by tho unbalanced
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(top) to 180 (bntrow) (hotiae the decrease in Doppler
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'amplification or attenuation on the in  phase and
iquadrature components of the original data. The radar
‘antenna is on to the right so that the target 1looks 1like
it is closer to the antenna than it really is. This is
‘due to a consistent error in the delay time of the

reference echo that was homodyned with the target echo. A

measurement on the range profile corresponding to 90°

azimuth shows that this delay error corresponds to a

1

'spatial distance of about 38ft or 0.077 sec, In some
-sense this error is advantageous in this case because it
allows a separation or the signal with its mirror image.
The whole precess is analogous to a hologfaphic process.
At 90° azimuth, both the nose and the tail are at equal

distance away from the radar antenna,
&

The simplicity of the pliase scructure also

]

‘underscores the fact there are very few point scatterers on
the terget. From the Doppler phase on Fig. 7.2,2b, the
‘phase over the signal range bins fluctuates progressively
slowly toward 0° and 180° azimuth. Such a Coppler phase
:history is typical of point scatterers at the nose and

tail of the plane.
!
The magnitude and phase of the range compressed data

for data set §2 is similar to Fig. 7.2.2. |

i
!
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| From the range profiles, it is not difficult to see

? 'that the nose and the tail are consistently the dominant
i , . .
reflector. Notice how the nose and tail signals converge

|

toward the same range cell at 90° azimuth,

H

7.3 Azimuth Compression, Coherent Processing

The azimuth compression step is basically a matched

3 ' filtering process in which each point that is being

'reconstructed is associated with a unique filter function.

It involves interpolation and coherent integration as
!
expounded in Egs. (6.1.2) and (6.1.3), respectively. This

i

"is how it was done, The reconstruction image was chosen

Rl

fto be 256x144 with a scale of 200pixels: 20£ft, so that it

1
.covered the entire target with a negligible amount of

arn

sampling clutter, Initially, the complex image was
f 0
!initialized to zero. Then the first signature (3= 0

:azimuth) wags scanned, For each complex image point (£,n),

“a

a two -neighbor interpolation generated a sample data as

follows. L
j "
' % Ipc (1) = 3{9pc(drm)¥gpeiiny))

|

%with
| . ny = [2;kgl
: {
N )
S ! =
ﬂi = Ecosei+nsxnei
‘ ei = (2“/1300)i (izO)I'Z'QUO'N'.l)
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? Ix1

smallest integer greater than x

lx] largest integer smaller than x.

‘The final image point value was
N-1
| k N

_ 0
l Gcoh(g'") ~ 1800 9Rre

i

| -j2mk_. %
|

l i=1

'

t

(i)e min®l oeon).

+Because of azimuth undersampling, coherent integration is
! o

carried out only when O;-arctan(w € lay within 0+6_ or
'180°40_. For data set#l, 68, = 47° and for data seti2,

: o

§
i Figure 7.3.1a is a reconstruction from data set 4§1.

‘Since the target was svmmetrical about the horizontal

!
~axis, only the top half was reconstructed and the bottom
a

‘half is its mirror image., The dynamic range of the
Fmagnitude of the reconstructed image is large so that
%weaker signals 1like the wing sections were not visible.
jThe log magnitude is displayed instead. Figure 7.3.1b |is
jthe magnitude of the same reconstruction from data set #2,

:with no target symmetry assumed., The visual quality of
;the reconstruction does depend on the general intensity
‘bias and contrast of the video display, but since our
lobjective is to demonstrate the possibility of getting

1
bl
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' Figure 7.3.1, Reconstruction by coherent processing
- § technique. (a) Log magnitude of reconstructica
P ; from data sct 1, with 180° of azimuth samples,
5 . : and with Gc- 47°. Target symmetry is assumed.
3 ) Center R.B. (range bin) # =198, (b) Magnitude of
: { reconstruction from datg sot 2, with 360" of
: i azimuth sawples, Bc- 29", and center R.B.§ = 193,
& [
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"high resolution radar images, we will not be concerned
|

,with that aspect of the problem. 1Instead, a subjective

~visual criterion was used to adjust the intensity bias and

.contrast until it was most "intelligible."
i

i
‘ From Fig. 7.3.la, the nose of the plane is distinctly

'identifiable. About 2.5 feet behind, point reflectors

from the cockpit and air intake is also barely resolvable. E

-The delta wing structure subtends an angle of about 60°
i

;which is consistent with the actual physical target. The

lentire length of the tail section can also be seen,
However, there are serious problems inherent in this kind
:of imaging system. The most sgerious one is the
?non-constant reflectivity of most practical targets,
‘called glint for fluctuating magnitude and scintillation
ifor fluctuating phase, The spikes at the tail section of
jthe reconstruction image are caused by such a problem.
jThe longer spike is due to a strong surge in the
ireflectiviiy of point reflectors around the target
fcoordinate (6.5ft., 180°) when the line of sight is at
fabout 150° azimuth. The shorter a.d .ia-er spike is due

H

"to the same reason on a point reflector (7.2ft., 18090)
i
when the line of sight is about 20° azimuth. This

reasoning is suppotted by the evidence from plotting the

‘magnitude of the range cells along the curves traced out
H

:on the projection space data by target points (6.5ft.,
|
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|180°) and (7.2ft., 180°). This is exactly what was done

o e et memmms e e e ey

in Fig. 7.3.2a and Fig. 7.3.2b, respectively. The strong

.delta function 1like surge in reflectivity does occur at

;150° for target point (6.4ft., 180° and at 20° for target
0 Epoint (7.2ft., 180°). Note the glint along the azimuth
:dimension. Since the coherent integration interval |is
fonly i470r most of the glint is not covered. Therefore,
' {even if the data were sufficiently sampled, the glint
:problem will become a limiting factor on the quality of
'reconstructed image. As an illustration, a reconstruction

3 .result is shown in Fig. 7.3.3 with #+180° coherent

interval. Note the substantial increase in'the number of

spikes radiating from the tail end. The two arcsg are

& azimuth sampling clutters described in Chapters 4 and $S.
H ' .
, The delta wing structure on the image from data setdl

g is also a part of the glint phenomenon. The front sharp
% iedge of the plane reflects strongly only to 90° incidence

waves. Hence, the edge of the delta wing is at best

‘resolved up to one range bin distance. This can be

e

quantitatively described by the Geometrical Theory of

Diffraction [20).
!

!

b : The glint problem can be described analytically. For

i .all practical purposes, we can assume that a point target

o 1
i ~(r0,¢0) is reflecting only when the line-of-sight is at an
| i'
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(a) Target point (6.5ft., 1800) over (0.1800)
azimuth of dgta set 1. (Note the strong
surge at 150 and the relatively weak
reflectivity over (0.900) azimuth.)

Figure 7.3.2., Magnitude of the reflectivity of two
tail end target points.
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(b) Target point (7.2ft., 1800) ovar (0,180%) i
azimuth of data set 1. (Note the delta
function type oforefleccivity change at

207 azimuth.)
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Figure 7.3.2 continued
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Pigure 7.3.3. Reconstruction from axperimental data set 1
uring unmodified ~oherent reconstruction
X " technique showing aspect (azimuth) angle
! undersampling offects due to nun-coustant
N target reflectivity functiom,
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i azimyth angle ¢r’ The 1line — of-sight dependent target

'teflectivity function can be written as
| 0(r,$,8) = 08 (r-x)8(6=0,)8(0=¢)
[

:whe:e 8 is the azimuth angle of the LOS.

|
!
The complex data from the radar imaging system will

t

“consequently be

'Using coherent processing, the reconstructed target will

jznrokcos(e-¢o)
D(8,k) = 95%0° 6(9-¢r) .

}be

i - ja2nkccos (8=9)

: Ooon (Eed)= jsko(e,k)e akde

ﬁ' Jank{rgcos (6-0,)-rcos (0-8))

i = 0% ) ke G(OAQY)dde

|

i n g r K sine (k, x )cjzuk°x‘ BCERY
g = Y0070 B e

fwhete X, = rocos(¢r~¢0)~rccs(¢r-¢).

‘Therefore the reconstructed image is a one - dimensional

.function of x, - It will look like a line strip passing
- through the point (ry.8) and extending out at an angle
i

(6,490%).  These strips, which we called spikes are

icleariy obvious from Pig. 7.3.3.
3‘;
: A second square Of glint that is not so obvious here
Eis the inatability of the in-phase and quadrature signal
%ampl;fiers. This is apparent from the fluctuating bias on

187
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fthe magnitude of the projection space data along the

- azimuth dimension. This is a problem in hardware

. technology.

i
:
!
!

The reconstruction from data set#2 1is characterized
t
by the glint problem too, but it 1is not as bad here

because the coherence interval is only 29°, The bright

t

spot near the center is the target center of rotation., It

;is put in for reference. In this reconstruction, the

1

cockpit and the alr intake of the fuselage are even better
!

V 'resolved. Part of the triangular shaped rudder, the tail

;and the wing edge can also be seen. A lot of signal noise
appear near 90° and 270°% azimuth. This is due to the fact
'Ehat the prqjacﬁion data was very noisy around 90° and
.270° azimuth. The angulacr discontinuity in the intensity
of the reconstructed image is due cd the concentration of
‘signal like noise around the 90° and 270° azimuth region,
iand the small coherence interval being used.

i

A logical step that follows is to de-emphasize the

magnitude filuctuations in the projection data. One method
]
is to reconstruct the image from the phase of the

4

“projection space data only., The result is shown in
iFig. 7.3.4a. Another method is to replace the wagnitude
‘of the projection space data by its log(l+ magnitude)
ivalue. The resulting reconstructed image is shown ir
{

18
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Phase only reconstruction

Figuce 7.3.4. Images from data set 2, reconstructed from
modified range compressed data.
(a) Phase or!y reconstruction.
(b) log(l 4 magnitude) reconstruction.
(c) Reconstruction from range compressed
data norwalized in magnitude.

-—a s s e MM 6 r mm et e s 2 ——

- m——

189!




v P IS RITA A 7 T ad i e

Ao, ot v

Reconstruction from normalized magnitude

Figure 7.3.4 continued
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F1g. 7.3.4b. A third possible method is to normalize the
]

? ‘projection space data so that the maximum magnitude in
}each signature is normalized to unity. The reconstructed
! .
. image is shown in Fig. 7.3.4c.
|

? |
! Shadowing problem is potentially also a serious
|
;limitation to the imaging system. To illustrate this,

. idata set #2 was recoustructed with no target symmetry
3 }

!assumed. This is shown in Fig. 7.3.5. The bottom half of

]
1

‘the target cannot be seen since no data was collec£ed over
;180° to 360° azimuth, This problem can partially be
iovercome by taking 360° azmuth data, However, in
fpractical situations this  luxury is probably not

i
éavailable. Fortunately, the shadowing problem only

L

'becomes serious on 0° elevation. Since for most practical

i

fapplications the elevation angle is non zero, shadowing is
i

fnot expected to become a major handicap.
- l

Error in Tarqet Rotation Center Range
I
! In practical situations, the range of the target
|

e

fcenter of rotation is never known exactly. Two types of
‘errors are possible in the estimation of the range of the

étarget center of rotation,
l

.
'
)

191

“n




T e Yl e ot AT ~PNETTR YV VR e s e ey e oy o rn e = e e agaem

Figuxe 7.3.5. Reconstruction with 180° aspect (azfmuth)
angle extant from experimental data set 2,
with no target symnatry assumeu. The bciton
half of the targe® is in the shadow regilon.
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i1l) Constant Range Error

' 2r
Suppose the reference signal was delayed by _EQ
| 2r a
;instead of __0 where Yy is the estimated range. Then the
| c
|
icollected data will have a range fregquency carrier. Let

! A

3 =r0 +r Then - g2rr k

0 D(6,K) = e € G(8,k)

where the constant of proportionality has been omitted.
|

‘The blurring function is an isotropic function h(r).
- J21r k N

h(r) =8{e €} = hir)= w2(r)
—iglrz-r§]~3/2 r>r >0
h(r) = 27
0 r€>r;0
w, = anBsinc(kBr)cos(ZHkor).

since h(r) is singular at r = rg, h{(r) is a ring- like

-function with radius rg . Besides the blurring, the
'reconstructed target image is also displaced in 1location
iby (e}dey) where (cx,ey) is the (x,y) coordinate error in
n

the center of rotation [page 144, 37].

!

Figure 7.3.6 shows a sequence of reconstruction from
idata set #2 using a sequence of estimates for the location
;of the target rotation center. The target rotation center
Eis located around range bin number 198, The
greconstructions are made with the center of rotation at

i
irange bin 197, 197.5, 198, 198.5, 199. Data set #2 is

193
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Figure 7.3.6.

Center of rotation at

range bin # = 197.0

range bin # = 197.5

range bin # = 198.0

range bin # = 198.5

range bin # = 199.0

Reconstruction from data set 2, using coherence

interval Oc- 47°, mean (spatial) frequency k = 194,478
but varying center (of rotation) range bin number.
One range bin number correspouds to 0.56 ft.
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iused because it has a wider coherence interval and

- therefore the blurring effect can be more noticeable for

|
‘center range 187 to 199. It should also be realized that

I

- the smaller the coherence interval, the less severe is the
i

.effect of constant range error.

2} Sinusoidal Range Error

Suppose ?O = r0+r€cos(9+9€) where r., 6. are constant,

, Then the gathered data will be

-J2nkrEcos(6+ee)

D(8,k) = e G(0,k) .

!In Cartesian coordinates this can be rewritten as
i

-j2n{k_x +k_y. )
- x"e "y'e
D(kx,ky) e G(kx'ky)
“where
' kx = kcosé
= i
ky ksind
X, = recosee

Ye = resinee.

‘The reconstructed image will simply be shifted by (xcry o)
l

‘and no blurring or distortion occurs.

|

| This type of range error is very realistic because in
-practical situations r; is more difficult to estimate than

1A

ry. For example, EO can be taken as the range of the most

!
|
i
\
1

' prominent point reflector or the closest point reflector,
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Error in Rotation Rate

|

|

;hence it is difficult to examine its effect over large
I . :
iazlmuth coherence intervals, For small azimuth coherence

In general, this error is time variant in nature and

fintervals the problem has been solved [page 139, 37].
i
.Suppose a small error exists in the rotation rate such

1

!that

Ag = D¢

l-ao

'where A¢ 1s the actual target rotation in a given

?increment of time AT and A0 is the azimuth increment in

;the same AT, Assuming |€e| = constant <<1 and small
fazimuth coherent processing interval, the data over that
i

iinterval is kz

| -j?neex(ix) '
' = .
D(kx . ky) = @ 0 G(kx ' ky(l+88))

. [ = -
where kx kx ko

kx = down-range frequency

ky = ¢cross-range frequency

.Therefore the reconstructed image will suffer a scaling
tdistortion in the azimuth dimension, This is known as a
‘change in aspect ratio., Besides this, a range dependent

'defocus blur will also occur.
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7.4 Incoherent ﬁfoégééiﬁé '

f
|
' |

From the projection space data, the target 'signal

rextends over about 40 range bins. This means that only 40
|
-radial frequency samples are available for the target,

|
. The radial frequency sampling interval is therefore kB/4°
|

. . 1
'and the maximum radial frequency components is §'kB . In

|
‘order not to oversample in azimuth, a good criterion is to

let the radial sampling clutter and angle sampling clutter

overlap. This c¢an be achieved by choosing the azimuth

¥
|
|
'sampling interval as follows,

|
00 = Azimuth sampling interval =

i kB/40
i

radial frequency sampling interval
maximum radial frequency

kB/Z
2,86°

- Both data sets $1 and #2 are therefore oversampled in
i

fazimuth.
i
i

;out of every five signatures, The magnitude square in the

.projection space was computed. From that point on the

The data was resampled with 46 = 1° by keeping one

e

{ Shepp & Logan algorithm for CAT reconstruction was used to
‘reconstruct the target, Figure 7.4.1b and Fig. 7.4.2b

.shows the result of incoherent processing from data sets
|

o fil and #2, respectively. In Pig. 7.4.1b, target symmetry

was assumed. Here the reconstruction is "unintelligible"

l
;othet than to give a rough estimate on the length of the

|
Lo ‘target, Since 360° data is available for data set #2,

AN i T S T ¢ e
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Coherent Processing Incoherent Processing

"

Figure 7.4.1. Reconstructions from data set 1, using the
three recongtruction techniques.
(a) Coherent processing (47  azimuth coherence).
(b} Incoherent processing (180° projections).
(¢) Mixed processing,
(d) A sketch diagram of the F102A plane,
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Coherent Processing

(b)

Mixed Processing The Actual Setup

Figure 7.4.2, Reconstructions from data set 2 using the

three reconstruction techniques.

(a) Coherent processing (29~ coherence).

(b) Incoherent processing (360 projections).

(c) Mixed processing.

(d) The actual model F102A plane setup at 90° roll
on the rotating platform when data set 2 was
collected.
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iFig. 7.4.2b 1s much more intelligible. 1In particular, the
! )
'nose, cockpit area and the rudder is barely noticeable.

; Reconstruction nsing incoherent processing 1is also
|
~severely degraded by target glint. Weak spikes can be

fseen vradiating from the tail and nose tip.

'7.5 Mixed Processing
I

For negligible range walk, each azimuth interval must

be

1l _ o)

6
W= akg

'and for negligible change in Doppler (variable azimuth

2 0
J~—— = 5,81
ako

iThe projection space data were sectioned into segments of
|
azimuth width 3.2°, 1-D DFT was applied in the azimuth

I
'dimension on each segment to give an image frame, Each

idefocus)

O

BA

:image fraﬁe was rotated by an amount equal to its mean
.azimuth angle and interpolated in magnitude. After this
%the magnitude of all the rotated image frames were
isuperimposed. Even though azimuth ambiguity exists in
'each frame, it gets averaged out in the final image,
fFigures 7.4.1c and 7.4.2c are reconstructions from data
}sets 81 and #, respectively using this technique. 1In

Fig. 7.4.1c, target symmetry was again assumed which means

| | 200
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:that the wupper half of the image is a flipped version of
i 4
}the lower half. For reference, a sketch of the actual

'F102A plane is shown in Fig. 7.4.1d and the actual model
!

.on the turntable in the testing grounds is shown in
|

'Fig. 7.4.2d.

|
|

|
amounts of blurring when the target center of rotation is

Experiments [page 135, 10] have shown noticeable

off by as little as 0.25 range bin width.

1
|
1
|

7.6 Comparison of the Three Techniques

|
f The first obvious observation is on the target

 resolution. As predicted earlier, the resolution achieved

‘with coherent processing 1is best among all three

I

-technigues. The resolution with mixed processing is worse

“than that with inccherent processing for data set #2 but

%not go for data set $#1. It is therefore inconclusive as

"to which latter two techniques gives better resolution,

[

_Because of target glint, the coherent processing technique

‘will give non-uniform resolution in distinct directions.
i
“In practical cases, where only a fraction of the azimuth
i
.data is available c¢oherent processing will again give

‘non~uniform resolution. This problem is not sericus with

‘'mixed processing. The effect on incoherent processing is

|
‘not known,
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; As it is characteristic with any type of coherently
|
-processed image, speckle .s also present with coherent

:processingtechnique. The image frames do have a lot of

_speckle but it is washed out through incoherent summation,
1

i
1

"coherent and incoherent processing. This is natural for
|
the coherent technique because of the high reselution,

Sensitivity to glint is particulariy strong for both

;But for incoherent technique, it 1is due to the lesser
iamount data averaging. Sensitivity to a constant érfet in
;the target center of rotation is strong for both coherent
and mixed procegssing., It is also expectedl to be strong
'with incoherent processing.

i

5 sampling requirement is least critical with
fincoherent processing whereas botk the other two
techniques demand greater sampling rate., Computation tine
::equited is also substantially less for incoherent
jptocessing. It was only 2 minutes CPU time while it took

‘more than 90 minutes using coherent techniques,
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Chapter 8

INVERSE SYNTHETIC APERTURE RADAR

8.1 The General ISAR Doppler

In this chapter we will be concerned with applying

‘the basic 1imaging process to Inverse Synthetic Aperture
|
iRadar (ISAR). %'e ordinary SAR geometry consists of an
l

“airborne rad.: platform illuminating the terrain below.
. In contra:t ISAR geometry consists of a ground-based radar

‘tracking moving target, The motion of the tracked target

“is, in general, composed of rotational motion and
|
i

;translational motion. Since only the target's rotation
|
Iwith respect to line-of-sight (LOS) contributes to the

:imaging property, the Doppler induced by the remaining
|

fcamponents of the motion will have to be removed from the

!data before any further processing can be done.
I Let us first derive an expression for the return

. phase and Doppler of & jeneral target flying an arbitrary
I
Etrajectory. The practic.l assumption here is that the
|

‘front end c¢f the target will always be pointing in the
|

idirection of the trajectory. A target reference point C

|
'will be taken as that point in space which the tracking

|

Gt s ot s 4 At




. radar is locked on to. The instantaneous slant range
t

trector of thic target reference point C will be denoted as

I
{

' the gross range vector tg.

Let X be a vector of an arbitrary point B on the

target referenced to the target reference point C as shown
. in Fig. 38.1.1, The entire rigid body 1is moving with

:instantaneous velocity v(t) and rotation vector mT(t).
{
|

' Then the general range vector of B is

T=Ty+Xx ' (8.1.1)

. The phase return of a point reflector at B is

}

|

i

where k = % Er (propagation vector/p)

f o

; n L . =

u, 5 = (unit vector parallel to ro)
o To

g A = mean wavelength of radar signal.
“From here on: u will represent a unit vector in the

direction of the vector indicated by its subscript.

1

Therefore

=

1l —
...,._....¢=:r.
2nk Ty

11

l

I ——— a———

% Eg¥xeup
 Differentiating the left- and right-hand side of the above
equation 4

t 1 __.__
7wk at - ae tar ()
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=§f—9"+'d—§-ou +x.dur0
t dt r, dt
(8.1.3)
dr0 —
= = + w _XX'u_ -w, XX°u
d T I, L Xy
‘where —
: — r Xv
| Wy, A0
2
o
= instantaneous angular velocity (rotational)
of the LOS, due to its translational motion,
In deriving Eq. (8.1.3) we have used the following

Irelationships.

|

3 —

: Since x is a vector on a rigid body, its tangential
i

~velocity (WxX) 1is the only velocity component it has.

‘Hence, 3% =35 X%, Also from Appendix 8A,
X '—a—EQ = GLX-}E . Gr

‘ 0
where Eb is defined as before,

| Rearranging Eq. (8.1.3) and defining the time Doppler

£ = d¢
' frequency ?s 55 It the Doppler of the return signal is

TR e 8.1.4
£q =K = " (wT-wL)Xx~ur0 (6.1.4)

The Doppler frequency (fy) therefore has in general
. three components. The first component
dro

'is called the translational Doppler or the gross
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;range—rate of the target. This is the component that has
éno contribution to the imaging process. It must be
"isolated and subtracted from the overall Doppler in the

|
. tracking data.
s

The second component

fa = klBp X X vup ) (8.1.6)

i 1s that part of the rotational Doppler that is due to the
| . .

]

:actual rotation of the target.

¥ : The third component

f3 = k(wL X X o uro) (8.1.7)

5, . § o iis that part of the rotational Doppler that is due to the

frotational effect of the object with respect to the LOS

|

!
- and is contributed by the target's translational motion.

e A T e

-t -

]
The difference of the last two components
fz-f3 = k(mT-mL)X X -uro
p contributes to the imaging capability of the radar system
and it 1is <called the differential Doppler* or the
frotational Doppler,
(s

,*The terms translational Doppler and differential Doppler
‘were used by D.R. Wehner in (40].
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from the range rate in the tracking data. If the
signatures are sampled at sufficiently high rate, this
crude approximation can be fine tuned to a better accuracy
by following the Doppler history of a small point object
on the target. Examples of such points are the wing tip
or the nose tip of an airplane.

6& = 0 when the target is flying a linear trajectory.

|
‘In this case the f component of the differential Doppler

:is zero, When the aircraft makes a turn or maneuvers a

' non-linear trajectory, 6& £ 0, fo#0. Even though any

%yaw, pitch, or roll from air turbulence will create random
|
‘errors in Wy , such problems will not be of concern to us

here, B&' will in general be a linear combination of roll,

i

pitch, and yaw;

'd)',r=5r+_tﬁy +'l§p . (8.1.8)

r,ﬁy , and 5? are respectively the roll, yaw, and

£
=5
®
"~
o]
€1

!pitch components of the target rotation. If an aircraft

l

i makes a turn, @, (roll component) will be the dominant
. component of GT for the initial moments of the turn, Then

' W, will drop to zero and G& will take over. Simulation

l

| results [38] point to the fact. However, for arbitrary
e - - —

' maneuvers Wy,0y , and Wp will all be functions of time.
|

Because (ug-uy) is normal to the projection plane, it
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means that the projection plane will also be a function of
étime. It is very difficult to.estimate E& in general
gsimply from the phase return of the target. For simple
;flight trajectories however, gross estimations can be made

|
from the tracking data.

Except for the linear trajectory case, BL is in most

‘cases negligible. 7. has two components as follows.

e

=4

L= U * U, (8.1.9)

iwhere Tg is the elevation angle scan rate and by 1s the
‘azimuth angle scan rate. For targets at small elevation
i

:angles, Eé is usually negligible. Since wy, and w; in

1

:practice do not fluctuate wildly, the elevation angle 84

;and the azimuth angle 65 from the tracking data will

Iprobably give a sufficiently good estimate ofuwp ,

From here on, the problem cannot be developed further

‘without further information or assumption. One such

!the pattern of the various Doppler components for two
f
!simple trajections. the 1linear trajectory and the

|

information is the flight trajectory. We will 1look into

circular trajectory.
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‘8.2 Linear Trajectory

, To simplify the problem, let us look at the plane
!
-formed by the linear flight path and the antenna location

»
‘A as in Fig. 8.2.1. Let y be the distance BC along the

flight path between target reference center C and the
fpoint (B) of the closest slant range distance Rg. is

ithe aspect angle on the plane of interest and is given by
} o =Vo2 + o2

‘where 0o and 64 are elevation angle and azimuth angle,
I

irespectively. 6y is some initial reference angle such

that when the LOS is broadside on the antenna,

!

; 8 + 90 = 0.

The translational Doppler frequency which arises from

: the velocity component along the LOS is
i dr

s =k -9
£1 =k &
8.2.2a

= kvsin(e+60) ( )
| or L, ¥ (8.2.2b)
i 1’2 2

R0+y
;By expanding the inverse square root term in Eq. (8.2.2b),
‘ohe gets 2
i Ro
| = kvl —) + ... ] for y>R
2 0
| 2y
t
- kv € le 2 -
E £, v oo [+ RS g(ﬁa) +...] fory Ro+5'|5|<<Ro(8.2.3)
3 -
} = kv(i- - Lo + ... . for y<R,
Ry 283
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By integrating fl the translational Doppler phase from the
4
‘target reference center is

| R
; constant + kv[y+ 3y +...] y>R0
| 2 3
constant + e+ 2 E_ -1 E_ 4 ) y=R +e, | e|«R
2 2 R2 24 Rz 0 0 8 4
0 0 (8.2.4)
kv y2 1 4
© gonstant + 7—[§~ -7 Xi +...] y<R0
i 0 RQ
- Therefore for slant range distances much larger than

‘the broadside range Rb (i.e., Y>Rg and ngo), the Doppler
I

phase ¢; varies more or less linearly with y (or €) except
|
'that when YARg the quadratic phase term %g(%_)z becomes
i 0

isignificant. For y<Ry, the Doppler phase is a quadratic

'function of y. When the target velocity v is constant,

|
_the y dependence of the Doppler frequency and phase can be

Ecarried over to its time dependence. But when v is not

‘constant with time, the time variation of the Doppler

l
 frequency and phase will be more complicated. For this

reason we have chosen y instead of t for the independent

. variable in Egs. (8.2.3) and (8.2,4). This is illustrated

iin Figs. 8.2.2a and 8.2.2b,

The target rotation ET does not exist for the linear
i trajectory as that the first component of the differential

| Doppler is
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The second component of the differential Doppler is

| _ o d(6+8)

;f3 = --k(wL X°uro) where Wy = ——gg— Note that

|

'y = Rytan(e+6)) . Differentiating both sides of the above
I

iequation and rearranging the terms, one gets
!
i
|

4
w, = —

2 v 1l
+ R,
L R~ Ccos (0 60) or

0 Ry 1+(¥R---)2
0

(8.2.5)

t

wL is therefore maximum when the LOS is broadside and goes

|
§to zero in cosz(9+90). Suppose the target is flying at a

‘constant velocity toward the broadside position, and

¢
¢

'suppose the signature-to-signature time sampling interval
:is constant. As a result of Eg. (8.2.5) there will be an
-azimuth scale change between reconstructions from the far

data and the near data, Far data means data collected far
‘from the broadside aspect (i.e., large (0+404) or y). Near
!

‘data means data collected close to the broadside aspect

'(i.e., small (6+85) or y). To correct this, the
x

'signature-to-signature sampling interval (4t) in time must

fbe changed adaptively to

-1
l At « Wy (8.2.6)
!

i
‘provided that (848g) can be estimated a priori. If the

H
|
‘data is coherently processed ove: a wide aspect angle,

t

‘this adaptive sampling correction is even more important
|

because without it there will be not only a scale change

| ‘ — 215
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%problem but also a defocusing effect,

Equation (8.2.5) is plotted in Fig. 8.2.2d with y/Rj,

‘as the independent variable. Notice how w; (LOS sweep
!
rate) changes by a ratio of 3:1 from broadside position

1

:(y=0)to Y = 2Rg. Figure 8.2.2c shows the aspect angle
(8+85) as a function of y. Figure 8.2.3 shows plots from
%actual tracking data on an Fll1l plane flying a linear path
écollected over approximately 50 seconds. The gross range
i(m gross-range phase) and the range-rate (« transiational
iDoppIez) are plotted in Fig. 8.2.3a and b, respectively.
The aspect angle (08) is plotted on Fig. 8,2.3c., Over the
time interval when the gata was collected, the aspect rate
;”L is quite constant except for some local time fluctuationsg
|

‘8.3 cCircular Trajectory
!

1]

; A slightly more complicated case arises when the
:
.target traces out a circular trajectory of constant radius

s
2

R, We will sinmplify the problem by assuming that the

ipianc of the circular trajectory is the same as the
%plan& formed by the LOS at all times. %That is, Vv and Eb al-
;ways lie on a same given plane. Furthermore, the vector ﬁo
;co:KQSponding to the center of the circular trajectory is

£

constant. See Fig. 8.3.1.

The translational boppler in this case is

e — i s ——
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' But I, = Ry*R and V.R = 0, Therefore, f; =

Letting o being the angle between ¥ and Ro,

I
|
a N coso.
| fl = (kRov) T,
|
fThis can also be rewritten as
e - kv 51ant
| ! (1+62)172 (l—Ycoswrt)177
2RR
where = 0 s = R .
Y 2.2 ' R
R*+R 0

| 0

(8.3.1)

(8.3.2)

‘Note that a = /2 or 372 when v is normal to R, and @ = @

0
‘or Twhen vV is parallel to Rg.

For the case when Ry>>R  (8<<1) such that

|
|
;

rog.’RO

,constant, the translational Doppler is proportional to a

1
'sinusoidal function as follows.

£,  kvcosa.

If in addition v = constant, o will be a linear

(8.3.3)

function

I.of time and the translational Doppler history will be a

.8inusoidal function of time

£, X kvcos(th).

(8.3.4)
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i In general o is not known but if v is constant, Wep
1

will also be constant and the least squares method can be

iused to estimate wp. This will be shown in the following

I
; paragraph, f; in Eq. (8.3.2) is plotted in Fig. 8.3.2b

I
: for 6(=%_6) = 0.1, 0.3, 0.5, 0.7, 0.9 and in Fig. 8.3.3b
' for &= 0.01, 0.02, 0.04, 0.08, 0.16 with wp =1, v = 250

|
: 2f
‘m/sec, k = 0, fy = 5672 MHz, c¢ = velocity of light.
l c

'‘Note that for & <<1, f1
| :

, The gross-range phase ¢l history 1is also plotted 1in

varies sinusoidally with time t.

Figs. 8.3.2a and 8.3.3a as follows:
¢y = (deV&+62)'Vﬁ—Ycosz£?

where R0 was taken to be 76 km. The gross range (¢¢1) and
range-rate (=f,) for an Flll plane making a 0.99 turn are

-plotted in Figs. 8.3.4a,b, respectively.

The first component of the differential Doppler is

f2 = k(wT X x » uro)
where Wn = VR, If wT is constant, 1t can be estimated

. from the ‘tracking data as follows. From Eq. (8.3.1), a

slight modificationdyill give
x
0 _
I0 e = (Rov)cos(th+a0).

lIf Rov is constant, then the product of the range rate
!(f;%) and slant range (rp) will be a sinusoidal function
Eof t with some arbitrary error added to it, Let

y = lyo'ylv---vYN_llT

'where
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= a_
Yy = Tolty) FE Tolty)
N = total number of signatures taken over the circular
'Also let L ajectory. .
f = [fo[fl’ zlooo,fN_zl

| fi= Ryv cos (wyt, +o,)
‘Let § = [RyV g dO]T be the vector to be estimated. Then
‘we can write

V=FT® +%

'where ¥ = error vector. Suppose X; is the initial quess

for X. 'Then ¥ can be iteratively estimated by minimizing

{the least squares error fTF using the steepest gradient

i
|

‘method as follows.

|
! - _ = ,— T
! *n+l = *p” % [afix)] (y-£f(x)) (8.3.5)
| where |J| L ax
= _ d SE(X)]T,- =,—
- dx - (y-£(x))} .
dx ;[ 9% ]

. The second component of the differential Doppler |is

£3 = K(GXR Gy ).

w, = =

8
L~ 4d

(18

0 and Ly Both 6 and Wy can

|
.be expressed as a function of time as

:where @ is the angle between R

‘where Y is defined in Eq. (8.3.2) and t = 0 when the
I
target is closest in range to the antenna.
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sinw. .t
6 = tan ! Sy % (8.3.6) -
--9- - COSth
1 d-cosw,.t
oy = 3V TycosuE r (8.3.7)
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. Equations (8.3.6) and (8.3.7) are derived in Appendix 8B.
| .

tw,  can also be approximated by smoothing the angle
i

;tracking data Ve§+e§ over the entire aspect angle of

: interest.

i
|
|
: Equation (8.3.7) indicates that w is a function of
;time with wp increasing to its maximum around the
1trajectory points with zero range-rate. wL/mT is plotted
iin Figs. 8.3.2d and 8.3.3d with é = 0.10, 0.3, 0.5, 0.7,
'0.9 and with &=10.01, 0.02, 0.04, 0,08, 0.16,

!respectively. Note that for 6<<l,le|. peaks at points of

1

zero translational Doppler. Over the entire time interval
{(1 second) when the target makes a complete 360° turn,

Ifluctuates as much as 0.35mT for 6 = 0.16. Also in the
|

‘vicinity  of maximum (or minimum) translational Doppler

{T= 0.25 and 0.75) the rate of change of w, is most

t
'severe, Since the azimuth scale is directly proportional
!
ito wy, 1t will go through its most dJrastic changes around
!points of maximum (or minimum) translational Doppletr. If

‘corrections for changing wy, is not made, the resulting

!
image reconstruction will be most severely degraded in
i
‘azimuth around points of maximum (minimum) translational

fDopplet.
i

The aspect angle pattern is plotted in Figs. 8,3,2¢

{,
rand  8.3.3¢. The aspect angle 0 and the LOS sweep rate Wy,

229
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ifrom the same tracking data of a turning Flll plane are
fshown in Fig. 8.3.4c and d, respectively. Due to roundoff
:error and the inherent tracking loop estimation error in
gﬁ. w, was computed by taking the derivative of the
Ysrnoothed version of the angle (6) tracking data.

R R s e Tk, mmi'mmtz AR b

i
The overall rotation rate (mT—mL) will therefore not

t

.be constant even when v is constant. But if Ry>> Kk, then

1

2wT>>mL. In this case, the effect of the time varying
I

:nature of wL

aspect angle interval,

will be negligible over a reasonably small

{

I

In the analysis done so far, the surface scanned out
'by the LOS was isoplanar with the circular trajectory
' , . .
plane. In other words if u is s unit vector normal to

t

!the carth's surface andiI

xR
i ﬁh 4 n 0.

?(subsc:ipt h corresponds to the direction of horizontal
i
pelarization), then the circular trajectory piare is the

same as the (U,, Ry plane.

In general, that is not the case, The projection of

PRSP

the circular trajectory onto the (6h,ﬁo)vplane will be the

i

effective trajectory. WwWithin the limits of the far field

Lo

assumpéion, this effective trajectory will be an ellipse

‘'with its major axis along the line of intersection between
i

‘the trajectory plane and the (G,,F)) plane. This is

I

| | | | | 230
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: -
i illustrated in Fig. 8.3.5.

i Hence, if the circular trajectory gives rise to some
‘appreciable change in elevation angle over the tracking
i

!interval, the effective trajectory (which 1is elliptical)
i
: should be considered instead.

8.4 Conclusion

The time Doppler freguenuy associated with an

airborne target flying an arbitrary trajectory has been

.mathematically formulated. It was shown that the Doppler

x .
:frequency can be split into translational and rotational
|

‘components., The rotational compcaent is the Doppler
i

!
;induced by (mT-wL) where W is the rotation rate of the

étarget itsel€ and w; is the rotational scanning rate of
Ethe radar line-of-sight, Two examples are given, one for
!a linear trajectory and the other for a clircular
gtrajectory. In both examples the pattern of the
!translational Doppler was derived, the time wvariation
‘pattern of w, was also derived and the least squares
Eestimation of wp was studied,

Finally, it should be noted that for the linear

.trajectory case, the rotational Doppler was induced by

|induced by (wT—wL)>o’ Therefore, the rotational Doppler

-ut<0 while for the «circular trajectory case it was
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Pigure 8.3.5. Elliptical effective trajectory for small
argle of interscction betwe¢n the circular
trajectory plane and the ("h'Ro) plane.
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? . for the two cases have opposite signs. This means that if
| -
% » .a small section of the data from both trajectories were
s |
: -range and azimuth compressed, the cross-range in the two
, reconstructed images will have opposite directions.
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APPENDIX 8A

Our objective is to show that ¥x._ Y0 -3 X X.u_ ,
B _ 2 dt L o
.where w; = (rgxv)/rqy . First %f all note that
_ -0
o _ _ _To Zo_
and V1X(VoXV3) = V,(V1+V3)=V3(V1*Va). Hence,
du =
Yo .3 _ o %%
dt r 2 d
0 ry
.Therefore = r, _ _
= % - ——g— (V’ur )
0 r, 0
=L (v -u (¥u_ )]
r o r
— 0 0 0
du
- Ty 1 e = -
X = F[xev-(xeu, ) (Veu )
dt 0 0 0
1, o —— ey -
= [ (xev)u_, - (x°u_ )v]-u
Xy o g ¥,
= (Xel)U, - L (XU )
Yo To Yo To
T -
w (— X )X x°u
Yo o To
vXuy -
= 0) X x-u
r2 Yo
0
= -, X X*u
L ro
QED
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!
-1 S1nwy, Wt

tan

To show that 8

T

. coszt

~YCosuy, t T

0
ﬁ- cosw t

W,
L R +R
where

NON

_ Vv _
Wp =g o0 Y ZROR/(RO+R

Proof. Referring to Fig. 8.3.1,
‘ sin(m-w_t=-6) sin(mTt+9)

sinb - T -
R R, R,
) sinu%thigf sinecoszt
I Ro
‘Or: simplification,
} siant
6 = tan l\R (8B.1)
0
e coszt
;Since u&‘=f-%% by differentiating Bq. (8B.l1l) the rotation
‘rate of the LOS will be R,
2 l-ﬁ- cosmTt
w o, R 5 'wT
L 2
R +R0 1l ~Ycoszt
= (!‘—Y) m o
2 l-Ycoszt T
iwhere
§ = R/R0
ZRRO
Y = 5y *
RZ+R
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Chapter 9

EXTENSION TO FURTHER STUDIES AND CONCLUSION

‘9.1 Extension to Further Studies---Motion Compensation

|
i Wwe have addressed the problem of achieving high
|
.resolution 2-D digital reconstructions of radar targets
i
;from a multifrequency stepped radar. The first important

~criterion for such high resolution reconstructions is the

l

requirement that the radar. object be rotating at some
' constant or known angular rate, In practice, such
]

Erotational motion can be brought about from various
| .

sourceg, The first source of rotational motion can be
|

fgenerated from the translational motion of the radar

!
. target itself, One should keep in mind that it is the

I
'change in the aspect angle of the target with respect to

:the LOS which counts as the rotational motion. It was

!
i

,shown that this rotational motion 1is exactly the same
i

{
_rotational motion as that of the radar bean (mL) and

'

therefore it can be estimated from the radar angle

tracking data. This form of rotation is prevalent among

fnon—maneuvering aircraft and ships moving along a linear

|
itrajecto:y over calm seas. The second source of

| .
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‘yotational motion 1is the true rotation of the radar

object, Examples of this type of motion are the yaw and
roll of a turning aircraft, the roll, pitch, and yaw of a

ship on rough seas and the autonomous spinning and

i We have noted that the translational rotational
‘motion can be estimated from the radar angle tracking
'data. Because the rotation rate determines the scale and
the amount of distortion on the target reconstruction, it

is important to be able to estimate the rotation rate to a

ihigh degree of accuracy. Unfortunately, because the
Etarget size to beam width ratios of most targets are much
fsmaller than the beam splitting ratio (= angle track
Eresolutidn/beam angle), the tracking angle data are very
crude in accuracy and usually some amount of smoothing

would have to be done.

For the true rotational motion of the target, the

rotation rate will not be readily available if the tatget
is a non-cooperative target, In such c¢ases the true
:rotation rate is difficult to estimate. Although further
:work has been done in the area of rotation rate estimation
Efrom radar signals, it 1is not within the scope of this
?dissertation. The important point to be made is that the

|
Itrue rotation rate of a target can be estimated from the
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!radar signals itself and therefore the angular scaling of
!

:the radar data can be adjusted..

Even though the rotational Doppler is responsible for

the 2-D target reconstruction capability of the

-multifrequency stepped radar, it was shown that the data

'is a composite sum of two Doppler components, the

|
|
"process. Therefore with any realistic radar data, the

|

; translational Doppler must be removed from the raw radar

rotational Doppler, and the translational Doppler which

does not contribute to the 2-D target reconstruction

'data before any reconstruction procedures can follow.

;This step 1is called motion compensation. Since any
|
i

translational Dop;’ler not completely offset by motion

icompensation will easily degrade the quality of the radar

|
i
i

object reconstruction, it becomes equally as important a
‘task to be able to correctly carry out motion

|
' compensation,

i Ideally, 1f one knows the exact motion of the target,
‘one can carry out motion compensation on a target exactly
;without error. In the absence of such information, motion
;compensation becomes a difficult task. 1In the case when a
greference target point scatterer stays within a single
;range resolution cell for a long period of time, one can

Kcompletely motion compensate the data over that period of

E
|
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itime [10]. This is accomplished by subtracting the phase

iof the range compressed data over the entire range profile

|
.with the phase of the data in the range cell in which the

érefetence target point resides. The criterion  for
|

choosing such reference range resolution cell is that only

' one scattering center should reside 1in that
t

‘resolution cell., If two scattering centers happen to stay

range

:within the same reference range resolution cell, the
1

\
‘reconstructed radar object would appear as dual objects.
i

‘Therefore, it is not difficult to idehtify such cases,
I

l .
cancel out the phase in the reference range resolution

:cell.

Note that such motion compensation schemes will completely

_ To achieve higher resolution,a much more stringent
i

|
motion compensation scheme is required. For one thing a
i

:given {or chosen) reference point scatterer will not

3a1ways stay in the same resolution cell., Therefore,

|

Twhenever the reference point scatterer migrates to the

Eneighboring range cell, the entire range profile will have
to be shifted by the same amount so0o that the reference
point scatterer appears to be residing in the same range
!cell. This procedure is called range alignment. ‘he
difficult task 1is to be able to carry out the alignment

procedure automatically over a long period of time (in the
I

;order of several minutes).




Another source of difficulty arises from the fact
‘that any given scatterer will always share a common range
!
{cell with some other point scatterer at some target aspect

;angle, For the processing of radar data over a wide range

|

lof aspect angles, this situation is guaranteed to occur,
|
iWhen this occurs, it will be difficult to differentiate

.which of the two scatterers in the reference range cell is

|
|

the reference scattering center.

A range alignment procedure was proposed by Chen

[11]. The original purpose of this alignment procedure

l

i
é
‘misalignment due to range tracking errors. The amount of

|

!
!

profiles was estimated by computing the amount of relative
|

was to correct the range profile to range profile
range offset or misalignment between two adjacent range

'shift between two adjacent range profiles for which
|

‘maximum cross-correlation is obtained. Only the magnitude

!
'of the complex range profile was used in the

scross-corrélation. Wwithin a short period of time, such a
t

proceduce provided enough correction so that the remaining
{

‘misalignment was noticeably within one range cell width,

‘For longer periods of time however, such a procedure does

| :

‘not prevent the reference scatterer from drifting from.

:range cell to another,

A new tange alignment procedure that will prevent




L
k-

%ﬂ _ [long term drifting of a reference scatterer is needed,

'One method is to identify a point scatterer €for the

|

 reference scatterer and track its 1long- term drifting
, behavior over the entire period of time in which coherent
-processing 1is desired. The method can be described as

’ ;
"follows, First, the range profiles are range aligned to

L e
-

!remove misalignment.due to range. tracking errors, Then a

|

3 suitable point scatterer 1is chosen as the reference
| |
1
!

|
| scatter center. When there is no other resident scatter
|
rcenter in the same range cell, this reference scatterer

can be traced in range as it hops from one range cell to

~another, If the range profiles are sampled at small

l

-;enough time intervals, so that there is no ambiguity in

- !
3 3 ;the phase change between adjacent range profiles, the

rrange drift of the reference scatter center within any

‘range cell can even be estimated to within a fraction of

« " the signal wavelength.

‘ Finally, when the ambiguity of two scattering centers

residing within the same range cell arises, one can use

L 2N
.

QDoppler measurements to resolve the two scattering

centers, when Doppler measurements ate needed to resolve

i
. ambiguous scattering centers, one must motion compensate

a» i

"the data €first, However, since the objective is only to

i resolve two scatterers, a cruder motion compensation

M GRS e e -

-procedure is sufficient. This can be achieved by removing

»r
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[
ithe smoothed phase history of the range cell. Even though

| .
“there is enough reason to believe that the above motion

~compensation procedure will sufficiently align the
| reference scattering center over a long term, much more

fwork will be needed to show its performance.

|

‘9,2 Conclusion

;around the problem of the target identification which

A great deal of the current research activity centers

éhopefully will lead to automated target classification.
‘The use of the term "target" implies that radar signals
;are used exclusively, which is misleading. 1In practice,
itatget identification problems are also entertained by
iresearchgrs in the infrared and optical regions of the

i
B

electromagnetic wave spectrum,

One of the basic approaches to the problem of target
i

;identification using radar signals is to obtain faithful
reconstructions of the target and then apply target
iidentification algorithms on the reconstructed image of
:the target. This approach is followed in this
~dissertation except that we concentrate on only the

X
reconstruction part of the problen.

In Chapter 2 we have described how a multifrequency

o ————

step (MFS) radar represents the Fourier transform of the

e ot . st bt
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itarget scattering coefficient distribution (x,y) of a
}

rotating object. It was mentioned without proof that a

isimilar relation holds for other coherent radars. The

" above relation holds as far correct as the following three

|

important assumptions can be held true:

1. the radar signals can be motion compensated exactly;

2., ( x,y) does not change with the aspect angle of the
target relative to the line-of-sight;

3. the back scattering of radar signals is specular in
nature,

(Atmospheric effects on the signals are less

|
|
|
|
|
|

important.)

In general, the radar data represents the 3-D Fourier

g

itransform of the target gcattering coefficient
1

Adistribution. In the special case in which the rotation
‘tate vector is constant in direction, the data represents

;the 2~ Fourier transform of the target scattering

‘coefficient distribution. In this case, the signal
éfrequency of the MPS radar represents the radial dimension

in the Fouriet domain, and the aspect angle represents the
. angular dimension in both the FPouriet domain and 'the

1taxget space domain, This means that the radar data

]

1samples the Pourier transform domain of the  target

!

“function (x,y) in polar coordinates,

e et i
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! The raéar signal frequency has a ﬁaximuﬁ-and minimum
ifrequency limit defined by the burst of pulses in the MFS
~radar. If in principle the target aspect angle changes
through 390°, then the radar data in the Fourier domain
will be constrained to within an-annula ring for the 2-p
;case. The frequency limits become a masking or filtering
AOperation on the radar data. Since one can reconstfuct

the target simply by taking an inverse Fourier transform

of the annula ring. The annula ring mask or filter |is

called the pupil function and its inverse transform is
called the point spread function of the entire imaging
~systen, It was shown that for narrowband systemg (mean
?siqnal frequency signal bandwidth of the bLurst of
. pulses), the Payleigh  resolution was  inversely
fproportiénal to the mean signal freqguency only. The sane
:conclusion was reached with the reseolution problem when
Tthe Doppler bandwidth of the signal was studied. This |is

“shown in Chapter 3,
|

Since the radar data is sampled discretely in polar
écoordinates in the Fourier domain of “he target function
: {x,y), it is important to understand the sampling
jtequirements in both radial and angular dimensions. 1In
;Chapter 4, the effect of undersanpliig in either

_dimension was demonstrated. The necessary condition and

the sufficient sampling condition wete also derived and
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|

4 . ; summarized in Table 4.2.1. Sampling requirements from the

% {

%‘ Sy . DOF (Degrees of Freedom) ([15] or time-bandwidth-product

4 . 1

§_ ; .pointe of view also gave similar results, Moreover, a
|

éprocessing method was also suggested for cases in which
> ‘the radar data was not sufficiently sampled but satisfies
Ethe necessary sampling condition.

In Chapter 5, an analytical approach is followed to
%solve the sampling requirement with polar format sampling
. in the Fourier domain. Pcisson's summation formula was
:applied to the Fourier transform of the unit circle
isampled in angle only. The same formula was applied to
'the Fourier transform of the annula ring pupil function
"sampled in radial dimension only. Then the process was
repeated” for the annula pupil function sampled in both
;radial and angular dimensions. It was shown that the
ipola“ coordinate sampling effects were drastically
fdifferent from the well known sampling effects in
!rectangular coordinates, The most notable difference was

Ein the absence of the main spectrum repeated periodically

-m
™

in a rectangular fashion, In contrast, the polar
coordinate sampling gives rise to error terms (called
!clutter) which can accounted for as being the radial
sampling effect, angular sampling effect, and simultaneous
Eradial and angular sampling effect. The clutter from each

I
‘sampling effect consists of an infinite number of terms (or
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.orders) and each term (say *+the nth order term) is an
. isotropic function whose value becomes significant only
l . .

when the radial dimension of the spectrum is at n times

, some constant rfactor, This factor depends on the sampling

1

"interval of the corresponding dimension,

1
[}
!

i

i
i

sampling effect terms appears when there is radial
4

;sampling. The value of this term grows significant around

Besides the above three <clutter terms, a fourth

;the main lobe of the spectrum. It therefore does not
r

tbehave the same way as the other three sampling effects in

i
‘that it merely modifies the shape of the main lobe of the

;spectrum. Since its peak value is inversely proportional
|

‘to the K-1, where K is the total number of radial samples,

i

?its effect becomes negligible when the radial sampling
|

;interval is small. The polar coordinate sampling effects
l

‘were also studied with a disc pupil function (2-D circular
:low pass  filter). The vresults are summarized in

i
Table 5.4.2.

!
i
i One ghould probably realize that Poisson's summation
;formula was a powerful tool in analyzing the polar

_coerdinate sampling effects. Because of the limited scope

1

“of this dissertation, the subject was not pursued further.

However, it i3 not difficult from here on to arrive at a

_sampling tneorem corresponding to the polar format for~ .3

|
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;a counter-part to the sampling theorem in rectangular
i
.coordinates. It is conceivable that the analytical tools

}

;developed using Poisson's summation formula will find a

whole host of applications in areas where polar format

!
;sampling is a fact of lie.
|

Ichapters, three reccnstruction methods are described in
fChapter 6, namely the Coherent  processing method,
!Incoherent processing method, and the Mixed processing
!method. An approximate coherent processing method was

Based on the background developed in earlier

'developed with the potential of achieving high resolution

without the unduly increasing processing time and memory
I

lrequirement. It 1is not unreasonable in practice to

fencounter sampling rates (especially aspect angle sampling

‘rates) that do not satisfy the sufficient conditions
?showed in Chapter 4. Therefore, a method to process
gundersampled data was derived based on observations made
fin Chapter 4. The method 1is simply to process the
‘portions of the data where sufficient sampling |is

)

:expected.» The resclution of such a modified coherent

i

‘processing algorithm is also studied and summarized in

Fig. 6.4.2

!
|
i The incoherent processing method to reconstruct the
!

%target image without phase information in the range

|
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Eprofiles was shown to be similar to  tomographic
i :

. reconstruction systems. Therefore, tomographic

|
. reconstruction technigues can be applied to reconstruct
|

:the target from incoherent radar data. The mixed
I

‘processing technique processes segments of the radar data
~coherently and then superimposes them incoherently.

"Finally, digital implementation problems relating to the

|
-above three reconstruction techniques are described.

Chapter 7 shows the results of applying the three
“reconstruction techniques on two sets of experimental
;data. The data is recorded off a static radar object
iwhich has only rotational motion., Motion compensation was

therefore not necessary on the data. Results show that

even though the data was undersampled in aspect angle, the
|
;modified coherent processing processing can provide
!
‘reconstructions with resolution performance better than he
4

‘other two reconstruction methods. The constant target

H
.reflectivity <function assumption was found to be not very

~accurate and strong surdes in backscattering showed up as

k

bright stripes on the coherently reconstructed images., In
ithis case, the modified coherent processing method was
ffound to suppress a lot of these artifacts created by the
:non-constant behavior of the target reflectivity function.
fShadowing problems did appear to shade out most of the

%‘other' half of the tardet when less than 360 aspect
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i !
v ~excursion was allowed on therotated target. 1In practice

» 'since radar targets are usually observed at non-zero
ielevation (or depression) angles, shadowing problems will

not become an important handicap.

l
» !
! As it was described earlier, one of the basic

"assumptions on the data is that the data can be motion

fcompensated exactly. In practice this is not the case but

gone can hope to approach that assumption as close as
‘possible. Towards this objective, an attempt is finally

|
made in Chapter 8 to understand some of the basic

components of the target motion that create Doppler phase

shifts in the radar data. A simple model for the target

: ‘motion was used, in which the target trajectory and the
§ l
fradar beam line-of-sight was coplanar, Two simple

‘trajectories, namely the linear trajectory and the

1

‘circular trajectory were used and the behavior of their

jtranslational Doppler was studied,

|
! .
It is hoped that the work done in this dissertation

{
& provides some insight into the problems of high resolution

1

{

‘radar imaging and other questions posed by the high
j:esolution requirement, Much more work has to be done
: & ‘before one can establish the usefulness of the

jprinciples derived in this dissertation {n practical

applications.
)
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